
Rocket Pool

Rocket Pool Protocol Review
Version: 2.0

May, 2021

Contents
Introduction 3Disclaimer . 3Document Structure . 3Overview . 3
Security Assessment Summary 5Findings Summary . 6
Detailed Findings 7

Summary of Findings 8Unprotected Storage Allows Compromise During Deployment . 10Insufficient Delay for RocketNodeStaking.withdrawRPL() . 12Node Operators Can Lose All Funds Via An Invalid Signature . 14Trusted DAO Member Multiple Vote via Replace . 16Less Secure Node Account Can Set Withdrawal Address . 18Delayed Refunds for “FullDeposit” Minipools . 19Unmarshalling Pointers as nil . 20SSH Passphrase as Command Line Argument . 21Insufficient Password Strength & Complexity Requirements . 22Panic in the Unmarshalling of ValidatorPublicKey & ValidatorSignature 23Incorrect Access Control List for _upgradeContract() Function 24Network Contracts Have Unrestricted Access to Storage . 25Divide before Multiply . 27Refund of Successful Challenge . 28Inaccurate calculation of getTotalEffectiveRPLStake . 29Reliance on ETH1 Provider . 31Ineffective RPL Staking Collateral . 32Likely Gas Savings When Setting RocketStorage Values . 33Gas Savings via Bulk and Update Storage Functionality . 35
RocketTokenRPL.swapTokens gas savings . 38Unhandled Errors . 39Unused and Lack of Constant Variables . 41Consolidation of RocketDAONodeTrustedActions . 43Lack of Input Validation . 44Suboptimal Definition of MiniPool Storage Layout . 45DAO Settings Checks . 46Rounding of Auction Bids . 47Improper Emitting of Events . 48Potential Settings “Getter” Gas Optimizations . 49RocketMinipool Deployment Gas Optimisations . 50Distributed Storage Key Namespace Design and Organisation . 52Functions Can Be Declared External For Gas Savings . 54Miscellaneous Rocket Pool Contract Issues . 60

Round Two Findings 64Inaccurate RPL Inflation When Minting Multiple Intervals At Once 64Unexpected Behaviour If RPL Inflation Rate Set to Zero . 67Node Operator Can Refuse to Distribute Minipool Funds . 68Node Operator Can Revert processWithdrawal() . 70Unhandled Errors — Round Two . 71Frequent RPL Reward Claim Requirement Unevenly Impacts Small Node Operators 75Inconsistent User Deposit Gas Estimation . 76Miscellaneous Rocket Pool Contract Issues — Round Two . 77

1

A Test Suite 79

B Round Two Test Suite 85

C Vulnerability Severity Classification 91

2

Rocket Pool Protocol Review Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Rocket Pool smart con-tracts, smart node and developer library. The review focused solely on the security aspects of the Solidity andGolang implementation of the network, though general recommendations and informational comments are alsoprovided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality for the Rocket Pool smart contracts, smart node anddeveloper library contained within the scope of the security review. A summary followed by a detailed reviewof the discovered vulnerabilities is then given which assigns each vulnerability a severity rating (see VulnerabilitySeverity Classification), an open/closed/resolved status and a recommendation. Additionally, findings which donot have direct security implications (but are potentially of interest) are marked as informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite and Round Two Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Rocket Pool smart contracts, smart node and developer library.

Overview

Rocket Pool is a decentralised staking network built to be compatible with the Ethereum 2.0 beacon chain (eth2).This staking network aims to allow users who don’t possess the minimum ETH requirement (32) to become avalidator or the necessary technical skills to run a node, to participate in staking and earn rewards.
Rocket Pool uses three distinct tokens:

• RPL: Native Rocket Pool token, used for DAO governance as collateral by protocol node operators and“oracle” nodes.
• rETH:Wrapper token for Ether staked using Rocket Pool, received by users in exchange for depositing ETHto Rocket Pool.
• nETH:Wrapper token for Ether that represents the node operator’s share of an exited eth2 validator’s bal-ance, which can be later exchanged one-to-one for Ether once eth2 staking withdrawals are implemented.To be deprecated when eth2 staking withdrawals are implemented.

This staking service allows single stakers to deposit 16 ETH, with the protocol assigning 16 ETH from usersdepositing ETH and receiving rETH in return. This allows these single stakers to earn a commission rate on the

Page | 3

Rocket Pool Protocol Review Overview

16 ETH assigned by the protocol, allowing node operators to effectively earn rewards for staking other users’ETH.
The codebase targeted in the second round of assessment had removed the nETH token in favour of reducedcontract complexity and ensuring the system is better designed to work with ETH2 withdrawals when they areenabled.

Page | 4

Rocket Pool Protocol Review Security Assessment Summary

Security Assessment Summary

This review initially targeted the following commits:

• rocket-pool/rocketpool : Smart contracts powering the Rocket Pool protocol.
– Commit 026cc6c

• rocket-pool/rocketpool-go : Golang developer library for interacting with the Rocket Pool protocol.
– Commit fb20418

• rocket-pool/smartnode : Rocket Pool node implementation.
– Commit 0636339

The retesting review was conducted on the following commits:
• rocket-pool/rocketpool : Smart contracts powering the Rocket Pool protocol.

– Commit 5fc97999
– PR #201

• rocket-pool/rocketpool-go : Golang developer library for interacting with the Rocket Pool protocol.
– Commit a8a504f

• rocket-pool/smartnode : Rocket Pool node implementation.
– Commit 774ec28

• rocket-pool/smartnode-install : Rocket Pool node installation.
– Commit d80f424

Note: the OpenZeppelin libraries and dependencies used in rocketpool were excluded from the scope of this assess-
ment.

The manual code review section of the report, focused on identifying any and all issues/vulnerabilities associ-ated with the business logic implementation of the contracts. Specifically, their internal interactions, intendedfunctionality and correct implementation with respect to the underlying functionality of the Ethereum VirtualMachine (for example, verifying correct storage/memory layout). Additionally, the manual review process fo-cused on all known Solidity anti-patterns and attack vectors. These include, but are not limited to, the followingvectors: re-entrancy, front-running, integer overflow/underflow and correct visibility specifiers. For a more thor-ough, but non-exhaustive list of examined vectors, see [1, 2].
To support this review, the testing team used the following automated testing tools:

• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither
• Surya: https://github.com/ConsenSys/surya

Page | 5

https://github.com/rocket-pool/rocketpool/commit/026cc6cfa54e14f739f97de5d3797ef808e71426
https://github.com/rocket-pool/rocketpool-go/commit/fb20418514a4e84158fce1f3befd8112a9ad5263
https://github.com/rocket-pool/smartnode/commit/06363399eec16cb96db0abe288eada87dead0653
https://github.com/rocket-pool/rocketpool/commit/5fc979990928fa9bec3546a0ac480b9d64d86db7
https://github.com/rocket-pool/rocketpool/pull/201/commits/c1b208c7dd6783ebf996ff46a96f892d5948ae8d
https://github.com/rocket-pool/rocketpool-go/commit/a8a504f52a58160a658930f3051d6fe23544bd09
https://github.com/rocket-pool/smartnode/commit/774ec28531a702a446edcd30756691c0f4942d2a
https://github.com/rocket-pool/smartnode-install/commit/d80f424bc9c8ae836e96f716ed4ebaaa0980cc67
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya

Rocket Pool Protocol Review Findings Summary

Fuzzing activities leveraging go-fuzz have been performed by the testing team in order to identify panics withinthe code in scope. go-fuzz is a coverage-guided tool which explores different code paths by mutating inputto reach as many code paths possible. The aim is to find memory leaks, overflows, index out of bounds or anyother panics.
Specifically, the testing team produced the following fuzzing targets, shared with the development team:

• FuzzByteArrayUnmarshalJSON

• FuzzDecodeAbi

• FuzzEncodeAbiStr

• FuzzMinipoolDepositString

• FuzzMinipoolDepositUnmarshalJSON

• FuzzMinipoolStatusUnmarshalJSON

• FuzzProposalStateString

• FuzzProposalStateUnmarshalJSON

• FuzzRocketPoolConfig

• FuzzUintegerUnmarshalJSON

• FuzzValidatorPubkeyUnmarshalJSON

• FuzzValidatorSignatureUnmarshalJSON

These fuzzing targets have all been shared with the development as a by-product of this security review. Exe-cution and instrumentation can be done using a script provided by the testing team (fuzz_gen.sh).
Additionally, the team produced a suite of python-based tests. These tests verify some of the core business logicas well as demonstrate some of the listed vulnerabilities and issues raised in this report.
The output of these tests are provided in the Appendix (Test Suite and Round Two Test Suite), and the imple-mentations have been provided to the development team alongside this report.

Findings Summary

The testing team identified a total of thirty-three (33) issues during the first round of this assessment (RP-1 to
RP-33), of which:

• One (1) is classified as high risk,
• One (1) is classified as medium risk,
• Fourteen (14) are classified as low risk,
• Seventeen (17) are classified as informational.

The testing team identified a total of eight (8) issues during the second round of this assessment (RP-34 to
RP-41), of which:

• One (1) is classified as medium risk,
• Three (3) are classified as low risk,
• Four (4) are classified as informational.

Page | 6

https://github.com/dvyukov/go-fuzz

Rocket Pool Protocol Review Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identifiedwithin the Rocket Pool platform. Eachvulnerability has a severity classification which is determined from the likelihood and impact of each issue bythe matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the code base, including comments not directly related to the securityposture of Rocket Pool (e.g gas optimisations), are also described in this section and are labelled as "informational".
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 7

Summary of Findings

ID Description Severity Status
RP-01 Unprotected Storage Allows Compromise During Deployment High Resolved

RP-02 Insufficient Delay for RocketNodeStaking.withdrawRPL() Medium Resolved

RP-03 Node Operators Can Lose All Funds Via An Invalid Signature Low Closed

RP-04 Trusted DAO Member Multiple Vote via Replace Low Resolved

RP-05 Less Secure Node Account Can Set Withdrawal Address Low Resolved

RP-06 Delayed Refunds for “FullDeposit” Minipools Low Closed

RP-07 Unmarshalling Pointers as nil Low Open

RP-08 SSH Passphrase as Command Line Argument Low Resolved

RP-09 Insufficient Password Strength & Complexity Requirements Low Resolved

RP-10 Panic in the Unmarshalling of ValidatorPublicKey &
ValidatorSignature Low Resolved

RP-11 Incorrect Access Control List for _upgradeContract() Function Low Resolved

RP-12 Network Contracts Have Unrestricted Access to Storage Low Closed

RP-13 Divide before Multiply Low Resolved

RP-14 Refund of Successful Challenge Low Closed

RP-15 Inaccurate calculation of getTotalEffectiveRPLStake Low Closed

RP-16 Reliance on ETH1 Provider Low Closed

RP-17 Ineffective RPL Staking Collateral Informational Open

RP-18 Likely Gas Savings When Setting RocketStorage Values Informational Resolved

RP-19 Gas Savings via Bulk and Update Storage Functionality Informational Open

RP-20 RocketTokenRPL.swapTokens gas savings Informational Resolved

RP-21 Unhandled Errors Informational Closed

RP-22 Unused and Lack of Constant Variables Informational Open

RP-23 Consolidation of RocketDAONodeTrustedActions Informational Resolved

RP-24 Lack of Input Validation Informational Open

RP-25 Suboptimal Definition of MiniPool Storage Layout Informational Resolved

8

RP-26 DAO Settings Checks Informational Open

RP-27 Rounding of Auction Bids Informational Open

RP-28 Improper Emitting of Events Informational Resolved

RP-29 Potential Settings “Getter” Gas Optimizations Informational Open

RP-30 RocketMinipool Deployment Gas Optimisations Informational Open

RP-31 Distributed Storage Key Namespace Design and Organisation Informational Open

RP-32 Functions Can Be Declared External For Gas Savings Informational Open

RP-33 Miscellaneous Rocket Pool Contract Issues Informational Open

RP-34 Inaccurate RPL Inflation When Minting Multiple Intervals At Once Medium Open

RP-35 Unexpected Behaviour If RPL Inflation Rate Set to Zero Low Open

RP-36 Node Operator Can Refuse to Distribute Minipool Funds Low Open

RP-37 Node Operator Can Revert processWithdrawal() Low Open

RP-38 Unhandled Errors — Round Two Informational Open

RP-39 Frequent RPLRewardClaimRequirementUnevenly Impacts Small NodeOperators Informational Open

RP-40 Inconsistent User Deposit Gas Estimation Informational Open

RP-41 Miscellaneous Rocket Pool Contract Issues — Round Two Informational Open

9

Rocket Pool Protocol Review Detailed Findings

RP-01 Unprotected Storage Allows Compromise During Deployment
Asset rocketpool: RocketStorage.sol

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

The onlyLatestRocketNetworkContract() modifier allows direct modification of the RocketStorage contentsduring deployment. Any account can perform arbitrary storage modifications during the course of deployment,causing significant impact.
The current deploymentmethod1 involvesmultiple transactions and so is not atomic. Between the RocketStorage

contract’s initial deployment and when the boolean value "contract.storage.initialised" is set to trueupon completion of the initial setup, any account can successfully modify any storage value.
Possible attacks and impacts include:

• Setting "contract.storage.initialised" before deployment has finished, making completed deploy-
ment impossible with that RocketStorage instance.

• Setting the address of "rocketVault" to a contract controlled by the attacker that allows them to with-draw any deposited funds.
• Setting "contract.exists" to an attacker controlled contract. This effectively introduces a backdoor,allowing an attacker to make arbitrary storage modifications at a later date.

As of testing, deployment involves about 223 individual transactions, so there is plenty of time for an attackerto interfere, even without front-running with a high gas price. Given that Rocket Pool is a high profile projectand has some competitors, there is feasible motivation for a targeted attacker to exist. It would be complicatedto effectively hide the RocketStorage address during deployment, as a targeted attacker could monitor themempool and recent blocks for the relevant bytecode.
Although the attacks listed above are technically possible, any interference during deployment is straightforwardto detect, so any catastrophic impacts (resulting in the loss of user funds) should not occur. A failed deploymentwould simply never be advertised as the canonical Rocket Pool instance.
In reality, these attacks could hinder a successful deployment (by repeatedly sabotaging deployment attempts)and cost the development team excessive Ether in gas costs.

Recommendations

Some DApps can take advantage of an atomic deployment by utilising a “factory” contract to bundle the deploy-ment and setup of multiple contracts into a single transaction. This ensures no other transaction can affect apartially deployed DApp. However, due to the large number of contracts that must be deployed during setup,this method is not feasible for Rocket Pool.
1A TruffleSuite migration defined at rocketpool/migrations/2_deploy_contracts.js

Page | 10

Rocket Pool Protocol Review Detailed Findings

State changing operations in RocketStorage are protected by the onlyLatestRocketNetworkContract()modifier, which consists of the following check:
if (boolStorage [keccak256 (abi. encodePacked (" contract . storage . initialised "))] == true) {

// Make sure the access is permitted to only contracts in our Dapp
require (boolStorage [keccak256 (abi. encodePacked (" contract . exists ", msg. sender))], " Invalid

or outdated network contract ");
}

The testing team recommend changing this modifier to contain a check equivalent to the following:
if (boolStorage [keccak256 (abi. encodePacked (" contract . storage . initialised "))] == true) {

// Make sure the access is permitted to only contracts in our Dapp
require (boolStorage [keccak256 (abi. encodePacked (" contract . exists ", msg. sender))], " Invalid

or outdated network contract ");
} else {

// Only Dapp and the guardian account are allowed access during initialisation .
require ((

boolStorage [keccak256 (abi. encodePacked (" contract . exists ", msg. sender))]
|| boolStorage [keccak256 (abi. encodePacked (" access .role", " guardian ", msg. sender))]

), " Invalid or outdated network contract ");
}

Thiswould allow the deployer account direct access to storage during initialisationwhile appropriately preventinginterference by an external attacker. The additional gas costs incurred by adding such a check would only beexperienced during deployment.
In order to allow deployed contracts to make storage changes in their constructor, the existing migration scriptwould need to bemodified to register the contractwith RocketStorage prior to deployment. Thiswould involvepre-calculating the address of the new contract from an appropriate nonce value, or deploying via a factorycontract using the CREATE2 opcode. This pre-calculation is somewhat complicated but achievable (providedthe deployer account is not used for unrelated transactions during the course of deployment).
A simpler alternative could be to instead authenticate the "guardian" via tx.origin , but this has its own
safety concerns. This would allow contracts deployed by the "guardian" to modify storage without needingto be pre-registered, but would be unsafe should the deployer account interact with any external contractsduring the deployment.

Resolution

This was resolved in commit 495a51f that requires, during deployment, transactions be sent from registerednetwork contracts or originate from the "guardian" account (via tx.origin).

Page | 11

https://github.com/rocket-pool/rocketpool/commit/495a51f552b496e1aa61bdbec6cfcb5f882ac38c

Rocket Pool Protocol Review Detailed Findings

RP-02 Insufficient Delay for RocketNodeStaking.withdrawRPL()
Asset rocketpool: RocketNodeStaking.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

At present, withdrawRPL() only checks the cooldown based on the last block in which the node had increasedtheir stake.
The require on line [165] checks that a node hasn’t staked recently:
require (block . number .sub(getNodeRPLStakedBlock (msg. sender)) >=

rocketDAOProtocolSettingsRewards . getRewardsClaimIntervalBlocks () ,
"The withdrawal cooldown period has not passed ");

Due to the inherent reporting delay, time to achieve an appropriate quorum, and the fact that the Trusted NodeDAO reports only finalized states, it is highly likely that a node operator will know that their staked RPL is eligiblefor slashing before this is reported to RocketMiniPool .
As the current restriction will be satisfied as long as a node has not increased their stake within the recentperiod, a node is incentivised to withdraw all but the minimum stake. Given that a node will then only be slashedthe minimum amount, there is no reason for the protocol to reward staking more than the minimum RPL (i.e.any amount over the minimum is unlikely to be used to reimburse rETH balance losses and will not be used ascollateral).

Recommendations

The testing team recommends the introduction of a fixed delay between when a node first signals a desire towithdraw staked RPL and when such a withdrawal is permitted, such that this delay is larger than (at minimum)the average time taken to report an RPL–slashable event.
A potential implementation could involve requiring that a node wishing to withdraw should avoid claiming RPLrewards for an entire claim period before withdrawal is permitted. While this results in some loss in RPL rewards,it avoids the need for a separate “signal withdraw” transaction (and associated gas costs).
Even with this increased delay, it is likely that a node will know that it is eligible for RPL slashing long beforeit has exited and is reported as Withdrawable . Although this doesn’t resolve the situation entirely, considerintroducing another status Exited , that is set by the Trusted DAONodes when the validator is no longer activebut before it is Withdrawable . For slashed validators, this should be set as soon as the slashing has beenincluded in a finalized block (i.e. when it is “active slashed”, not waiting for any later penalties to be applied).While Exited , prevent the node from withdrawing any staked RPL.

Page | 12

Rocket Pool Protocol Review Detailed Findings

Resolution

This was resolved in commit 40321a8 that only allows node operators to withdraw staked RPL in excess of themaximum amount eligible for rewards (by default at a 150% collateralisation ratio). Because node operatorscannot withdraw their staked RPL until the validator is Withdrawable , the node operator cannot avoid anydeserved slashing penalties.

Page | 13

https://github.com/rocket-pool/rocketpool/commit/40321a829f35d2767abc68030578ebf9605da7fd

Rocket Pool Protocol Review Detailed Findings

RP-03 Node Operators Can Lose All Funds Via An Invalid Signature
Asset rocketpool: RocketNodeManager.sol

Status Closed: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

An Eth2 deposit can be submitted with an invalid signature, resulting in lock/loss of all funds such that only the10% RPL stake can be relied upon to recover funds for the network.
Normally, any balance losses are recovered from the node operator’s ether collateral, protecting rETH holders.Additionally, with the current Eth2 penalty calculations, it is highly unlikely that any balance losses due to slashingor inactivity could exceed 16 ETH. If even possible, the slashing would need to occur as part of a widespreadslashing event (in which many colluding validators are slashed), or the validator would need to be inactive for a
very long time during an extended period of non-finality.
However, invalid deposits can be submitted to the Eth2 deposit contract (which doesn’t verify signatures, onlydeposit merkle root) such that, when processed by the Eth2 beacon chain, the deposit is discarded and thebalance is never associated with a validator. With the entire balance lost, only the staked RPL (a minimum of
10% = 1.6 ETH) can be used to recover funds. This is the only identified, feasible way a node operator can causethe exchangeable value of rETH to decrease.
As an invalid deposit will result in the loss of the entirety of the node operator’s 16 ETH + RPL collateral, this iscostly to exploit at scale. It may, however, be possible to amplify a smaller-scale exploit to create and profit froma reputational scare (e.g. by shorting RPL).
This is also a significant impact available to trusted nodes with unbonded validators. Normally, a significant por-tion of trusted nodeswould need tomaliciously collude in order to negatively affect Rocket Pool. With unbondedvalidators, a malicious node can lock a relatively significant amount of user ETH (though this is somewhat offsetby the Trusted Node RPL bond requirement).
It may be possible that, when withdrawals are implemented, the Eth2 systemwithdrawal contract allows recoverof invalid deposits back to their withdrawal address. However, this cannot be relied upon.

Recommendations

As BLS signatures cannot currently be verified on-chain, this may be a risk that cannot be feasibly removed untilBLS precompiles are available for EVM contracts (e.g. via EIP 2537). While it could be possible to use a fixedwithdrawal address and have the node provide precomputed signature pairs that must be verified before theyare allowed to create a minipool, this is not very feasible given the decentralised design of Rocket Pool (youwould need to rely on the Trusted Node Dao to verify the signatures, introducing significant delays).
When BLS precompiles become available, upgrade RocketMinipoolDelegate.stake() to verify the signature.
Should an invalid deposit be made, ensure the Trusted Node watchtower software can correctly report thebalance as lost. Ensure any trusted node members are carefully vetted and consider RPL bond requirementswhen choosing the unbonded validator limit.

Page | 14

https://eips.ethereum.org/EIPS/eip-2537

Rocket Pool Protocol Review Detailed Findings

Resolution

As this issue can not be feasibly actioned, the development team has closed this issue until BLS precompilesbecome available for EVM contracts.

Page | 15

Rocket Pool Protocol Review Detailed Findings

RP-04 Trusted DAO Member Multiple Vote via Replace
Asset rocketpool: RocketMinipoolStatus.sol, RocketNetworkPrices.sol &

RocketNetworkBalances.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

Trusted DAOmembers perform an important service for the Rocket Pool network in acting as an oracle to reportRPL price, eth2 balances and validator exit status. While newDAOmembers are prohibited from voting on previ-ously existing proposals, there is no such restriction for submitting reports for prices, balances or withdrawables.
This can lead to a situation where a single entity repeatedly replaces their Trusted Node account and makesmultiple malicious submissions (votes).
The impact is somewhat limited for price and balance reporting, as submissions must be for blocks more recentthan the latest agreed-upon value. Given the proposal delays involved with replacing a DAO member, malicioussubmissions should usually be eclipsed by valid reports before enough malicious submissions can be amassedto reach the consensus threshold. However, because there is no restriction to prevent a submission for a futureblock, this is still a concern.
For withdrawable reporting, the potential risk is more serious. As shown in
test_malicious_withdrawal_reporting ,2 it is technically possible for a single entity to make multiple suc-
cessful transactions executing RocketMinipoolStatus.submitMinipoolWithdrawable() such that an exces-
sive _stakingEndBalance is accepted and nETH minted such that the node operator can drain all ETH held inthe nETH contract.
While it is readily possible forDAOmembers to identify thismalicious behaviour and kick the offendingmembers,that requires active monitoring and intervention. It is preferable to prevent this abuse in the first place.
While the testing team acknowledge that the proposal cooldown can provide some mitigation, that cooldownhas no effect on a newly joined/replaced DAO member.

Recommendations

In RocketNetworkPrices.submitPrices() and RocketNetworkBalances.submitBalances() a require state-
ment could be added that ensures _block < block.number , to protect against malicious submissions set farinto the future allowing sufficient time to accumulate submissions before they are eclipsed by valid reports.
Ensure that test_malicious_withdrawal_reporting (or an equivalent test) passes (see the accompanying
test framework delivered with this report).
Protect against duplicate withdrawable submissions by preventing new DAO members from reporting on previ-ously existing submissions, or invalidate non-finalized submissions when members leave the DAO.
In practice, it is difficult to feasibly track DAO member “heritage”, or to loop through and invalidate any non-finalized submissions when a DAO member is removed. This is because any unbounded looping may consume

2See Test Suite. The testing implementation is provided to the development team along with this report.

Page | 16

Rocket Pool Protocol Review Detailed Findings

gas such that the transaction cannot be processed in a single block. Possible solutions could involve:
• Recording the block number for new withdrawable submissions, and comparing it to the block when thenode became a member of the Trusted Node DAO.
• Enforcing a reportingwindow, such that thiswindow is comparable to the time required to propose, replace,and activate newDAOmembers. Where thewindow limits the time for which a submission counts towardsthe consensus threshold, or prevents additional submissions after the window has expired.

Resolution

This was resolved for balance and RPL price reporting in commit 7fb9b52, that ensures network balances cannotbe reported for a future block. A narrow time window is enforced such that, even with new and maliciousmembers, fraudulent reports should not reach a significant threshold before they are invalidated.
The Trusted DAO membership replace functionality was removed in commits 17088c0 and 15a643d, so twoproposals must be accepted in order to “replace” a member, increasing the barrier for amassing fraudulent re-ports.
Although it may be technically possible to accumulate fraudulent
RocketMinipoolStatus.submitMinipoolWithdrawable() submissions, this is a similar threat to obtaining a
controlling threshold of members, which is carefully managed. Incorrect MinipoolWithdrawableSubmittedevents can be easily detected by other members.

Page | 17

https://github.com/rocket-pool/rocketpool/commit/7fb9b52ef0bf4aac8794de1240189423f70c75d8
https://github.com/rocket-pool/rocketpool/commit/17088c0073e3ce86c8e183db925db5ac228392ee
https://github.com/rocket-pool/rocketpool/commit/15a643d446ebe8e7c95b5cb26aa4b5bc89b6a82a

Rocket Pool Protocol Review Detailed Findings

RP-05 Less Secure Node Account Can Set Withdrawal Address
Asset rocketpool: RocketNodeManager.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

The node operator’s account can always set the withdrawal address. Because the node account must makeregular on-chain transactions (e.g. in order to claim RPL staking rewards), it is likely the withdrawal address(should it be different) is set to some account more highly trusted and secure than the node account (e.g. ahardware cold wallet).
It is sub-optimal to allow the less secure account to arbitrarily change the withdrawal address, particularly as thewithdrawal address is used for all minipools associated with the node, not just new ones.

Recommendations

Consider requiring that the sender of a transaction executing RocketNodeManager.setWithdrawalAddress()
must be the node’s existing withdrawal address, to prevent redirection of funds should the node account becomecompromised.
To protect against accidentally setting the withdrawal address to the wrong value (and becoming unrecoverable),the following may be worth considering:

• Also allow the node account to set the withdrawal address, but only after a significant delay (during whichthe withdrawal account can cancel the change).
• Require that the new withdrawal account accept the change, similar to the “safe ownership transfer pat-tern”.
• The “safe transfer” may be undesirable for some node operators who want to avoid making transac-tions from the withdrawal account whenever possible, so it could be useful to add a boolean flag to

setWithdrawalAddress() that allows the address to be directly set without confirmation by the newwithdrawal account.
• Alternatively, but similarly, the existing functionality could be kept by default, but a new “lock” parameterallows node operator to disable modification by the node address.

Resolution

This was resolved in commit c2f2308 requiring that any changes to a node’s withdrawal address be sent fromthe current withdrawal address. It also allows node operators to perform a “safe ownership transfer”, to protectagainst accidentally setting an invalid withdrawal addresses.

Page | 18

https://github.com/rocket-pool/rocketpool/commit/c2f23087748311e7676be0e7a3512ec8419ff7d4

Rocket Pool Protocol Review Detailed Findings

RP-06 Delayed Refunds for “FullDeposit” Minipools
Asset rocketpool: RocketMinipoolQueue.sol

Status Closed: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

Any available “half deposit” minipools will always be assigned funds before “FullDeposit”. While prioritizing
HalfDeposits can maximize the amount of active Eth2 validators, in some circumstances, the refund for a
FullDeposit minipool can be delayed for quite some time (theoretically indefinitely).

Recommendations

Two possible suggestions that could resolve this issue are:
• Occasionally prioritize FullDeposit over HalfDeposit . This is difficult to do randomly on-chain, so a

“round-robin”methodwith a counter could be needed (e.g. every 4 deposits, a FullDeposit is prioritized).
• Have full and half deposits in the same queue.

Resolution

This has been acknowledged by the development team but is not an observed issue.

Page | 19

Rocket Pool Protocol Review Detailed Findings

RP-07 Unmarshalling Pointers as nil
Asset smartnode: shared/services/

Status Open

Rating Severity: Low Impact: Low Likelihood: Low

Description

The default Golang JSONmarshaller allows for nillable types such as slices and pointers to be unmarshalled
as nil .
Within RocketPool-CLI , these nil objects are often dereferenced without first performing validity checks.Dereferencing a nil address will cause the program to panic.
Some examples of where nil-pointer panics may occur, after unmarshalling, are:

• In smartnode/rocketpool-cli/node/status.go the following lines:
– line [33] math.RoundDown(eth.WeiToEth(status.AccountBalances.ETH), 6)

– line [34] math.RoundDown(eth.WeiToEth(status.AccountBalances.RPL), 6)

– line [35] math.RoundDown(eth.WeiToEth(status.AccountBalances.NETH), 6))

• In smartnode/rocketpool-cli/node/swap-rpl.go the following line:
– line [33] amountWei := status.AccountBalances.FixedSupplyRPL

– line [51] entireAmount := status.AccountBalances.FixedSupplyRPL

• In smartnode/rocketpool-cli/auction/status.go the following lines:
– line [30] math.RoundDown(eth.WeiToEth(status.TotalRPLBalance), 6)

– line [31] math.RoundDown(eth.WeiToEth(status.AllottedRPLBalance), 6)

– line [32] math.RoundDown(eth.WeiToEth(status.RemainingRPLBalance), 6))

These panics occur when unmarshalling API response data. The impact is that CLI commands may not executeall of the desired transactions leaving the node or minipool in an undesirable state. However, this data comesfrom the a trusted source and is unlikely to provide malicious packets except by malfunction or misconfiguration(e.g. using different versions).

Recommendations

Consider recursively adding nil-pointer checks after unmarshalling in smartnode/shared/services/ to ensure
all struct fields (and if a field is a struct, array or map, then those fields recursively) do not contain nil unless itis strictly necessary.

Page | 20

Rocket Pool Protocol Review Detailed Findings

RP-08 SSH Passphrase as Command Line Argument
Asset smartnode: RocketPool-CLI

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The passphrase for SSH connections is passed as a command line argument. It is recommended against allowingpassphrases to be passed as command line arguments as they will appear in the process table and shell history.
As the current threat model assumes that the RocketPool-CLI is run from a fairly trusted environment, this issueis classified as low impact.

Recommendations

We recommend using a flagwhichwill cause the passphrase to be read as standard input to be the defaultmethodfor handling passwords. Passwords should be read using the Golang function terminal.ReadPassword() .
As a password prompt is troublesome for non-interactive use-cases, consider replacing the current CLI flag witha parameter that accepts a path to a file containing the secret. This can be more secure, as file permissions canprevent access by other users, and the files can be saved to memory-backed partitions (so are never written todisk). This is compatible with docker compose secrets [3].
Also consider renaming the CLI flag to something containing the word “unsafe”, to discourage uninformed use.
Recommend, in documentation, that the node operators run their software on dedicated VMs or machines with-out any untrusted user accounts.

Resolution

This was resolved in commit 4e227ff by reading from a passphrase file instead of a command line argument.

Page | 21

https://golang.org/pkg/cmd/vendor/golang.org/x/crypto/ssh/terminal/#ReadPassword
https://github.com/rocket-pool/smartnode/commit/4e227ffc621e6f939c25de0a4da2d84470a6ae3c

Rocket Pool Protocol Review Detailed Findings

RP-09 Insufficient Password Strength & Complexity Requirements
Asset smartnode: shared/services/passwords/manager.go

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

Passwords are used to encrypt keystores to prevent malicious users from reading the private key data. Thisincludes both on-chain and off-chain keys.
There is only one password strength requirement when creating passwords, that is a minimum length of eight(8) characters.
Some users may create weak keys which can be brute forced or easily guessed, thereby exposing private keyinformation.
This vulnerability is considered a low severity as the password file is stored inside the docker container alongwith the encrypted keystore, and is assumed to be run in a fairly trusted environment. It is likely that anyonewith access to the keystore (in the default installation) will also have access to the password file.

Recommendations

Consider implementing and enforcing a strong password policy:3

• Passwords should be 12 characters or longer.
• Prospective passwords should be checked against a blacklist of commonly used passwords.

Resolution

This was resolved in commit 380f8ec by updating the minimum password length from 8 to 12.
3See also NIST guidelines: 5.1.1.2 Memorized Secret Verifiers — https://pages.nist.gov/800-63-3/sp800-63b.html#sec5

Page | 22

https://github.com/rocket-pool/smartnode/commit/380f8ec928b1dacf166a3aaf4fdc2cdf871714da
https://pages.nist.gov/800-63-3/sp800-63b.html#sec5

Rocket Pool Protocol Review Detailed Findings

RP-10 Panic in the Unmarshalling of ValidatorPublicKey & ValidatorSignature

Asset rocketpool-go: types/beacon.go

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The structs ValidatorPublicKey and ValidatorSignature in rocketpool-go are fixed size byte arrays of
length 48 and 96 respectively. These structs both implement the function UnmarshalJSON() which takes a
string of hex characters and converts it to bytes using the Golang library encoding/hex .
The function hex.Decode([]byte, string) will panic if the length of the bytes that are decoded
(length(string) / 2) are larger than the byte array provided. Hence, in the example below if the function
HexToValidatorPublicKey() is passed a hex string of even length greater than ValidatorPubkeyLength * 2 ,it will panic.
func HexToValidatorPubkey(value string) (ValidatorPubkey, error) {

pubkey := make([]byte, ValidatorPubkeyLength)
if _, err := hex.Decode(pubkey, []byte(value)); err != nil {

return ValidatorPubkey{}, err
}
return BytesToValidatorPubkey(pubkey), nil

}

A similar issue occurs in the function HexToValidatorSignature() as seen below.
func HexToValidatorSignature(value string) (ValidatorSignature, error) {

signature := make([]byte, ValidatorSignatureLength)
if _, err := hex.Decode(signature, []byte(value)); err != nil {

return ValidatorSignature{}, err
}
return BytesToValidatorSignature(signature), nil

}

Recommendations

We recommend ensuring the length of the string to be converted to a signature or public key is exactly twicethe required length (2 * ValidatorPubkeyLength and 2 * ValidatorSignatureLength respectively) elsereturning an error.

Resolution

The function, EncodedLen() , is used to return the length of the encoded src bytes, which is effective twice the
input bytes. This was resolved in commit 5091812 by enforcing a length check between the value string and
EncodedLen(dst) .

Page | 23

https://github.com/rocket-pool/rocketpool-go/commit/509181241bf7519994910709c10c149881025f96

Rocket Pool Protocol Review Detailed Findings

RP-11 Incorrect Access Control List for _upgradeContract() Function
Asset rocketpool: RocketDAONodeTrustedUpgrade.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

Currently, the Rocket Pool TrustedDAO restricts upgrades to contracts designed to be immutable. These include:
rocketVault , rocketPoolToken , rocketTokenRETH , rocketTokenNETH and casperDeposit . However,
the rocketPoolToken contract does not exist within Rocket Pool’s storage. The testing team believes thenaming of this contract has changed previously and instead should be rocketTokenRPL .

Recommendations

Consider changing rocketPoolToken in RocketDAONodeTrustedUpgrade.sol:45 to rocketTokenRPL .
Define all contract names as constants in a central abstract contract that all Rocket Pool contracts import. Thisavoids any risk of inconsistent strings and typos.
Consider sourcing these names in the contract deployment script or, at minimum, checking that the propertynames of the contracts object defined in 2_deploy_contracts.js have matching constants.

Resolution

The recommendation has been implemented by the development team in commit d0fc258.

Page | 24

https://github.com/rocket-pool/rocketpool/commit/d0fc2589c82b2cb77bf793ed6ae1f9508cde1970

Rocket Pool Protocol Review Detailed Findings

RP-12 Network Contracts Have Unrestricted Access to Storage
Asset rocketpool: RocketStorage.sol

Status Closed: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The RocketStorage contract is used for centralized data storage, allowing other contracts to be replaced with-out migrating data. Any registered network address has full access to modify any storage location, includingthose used by other contracts. This is an arguably excessive attack surface, where complete compromise of asingle contract results in that of the entire network.
This also weakens the effectiveness of other “defense in depth” measures. For example, RocketVault onlyallows network contracts to withdraw their own funds (as determined by "contract.name").
However, a malicious network contract can simply change its "contract.name" to "rocketDepositPool"and withdraw all associated funds.
Similarly, a network contract can set "contract.storage.initialised" to false, thus allowing anyone tomake arbitrary storage modifications, when the apparent intention is for this to only be changed during initialdeployment.
The testing team note that it is more unlikely that a vulnerable contract can be exploited tomake arbitrary storagechanges. This can be considered analogous to a conventional “remote code execution” vulnerability, as opposedto injection of specific values.
See also the related issue RP-31.

Recommendations

Consider using a standalone state variable to represent "contract.storage.initialised" , to prevent regis-
tered network contracts from later unsetting the value via setBool() or deleteBool() . This also has someadded performance benefits (see RP-18).
Consider implementingmore granular access control for RocketStorage . This could involve the RocketStorage
enforcing restricted “key-prefix” namespaces, where only certain contracts have write access to relevant names-paces. For example, it would be of benefit to allow only RocketDAONodeTrustedUpgrade the ability to modify
storage values with keys beginning with "contract.exists" , "contract.name" , "contract.address" , or
"contract.abi" . A more flexible implementation could be for RocketStorage to only allow modifications
via a single (upgradable) ACL contract.
The testing team acknowledges that this granular access control would likely require significant tradeoffs withregards to upgrade flexibility and gas costs. Enforcing key restrictions via namespace would likely require passingstring keys to RocketStorage for validation, thus making it more complicated but not impossible to update orrequiring the gas costs of an additional layer of abstraction via an upgradable ACL contract.
As access control improvements could well involve significant re-architecting and introduce other drawbacks, it

Page | 25

Rocket Pool Protocol Review Detailed Findings

can be reasonable to mitigate these risks through alternative means. These could include:
• Ensuring all development team members and contributors are aware that any contract changes have thepotential to affect the operation of unrelated and highly critical contracts (e.g. via CONTRIBUTING docu-mentation and checklists in Pull Request templates).
• Ensuring DAOmembers with the ability to vote on protocol upgrades are similarly aware that the registra-tion of a single corrupt or malicious contract can result in catastrophic impacts including loss of funds.

Those currently responsible are members of the Trusted Node DAO, later to be shifted to Protocol DAOmembers.
This awareness could be fostered via DAO member documentation and reminder checklists/warnings inthe voting UI.

• Enforcing a careful and staged upgrade process, where delays are enforced between an upgrade proposal’screation, vote, and when it takes effect.
• Centrally document the namespaces used for storage keys, to avoid situations where unrelated contractsaccidentally use the same key for different purposes.

Note: because these involve changes to the underlying RocketStorage contract, they cannot be applied as anupgrade to an existing Rocket Pool network.

Resolution

This has been acknowledged by the development team and no technical mitigations are deemed actionable dueto excessive gas costs.

Page | 26

Rocket Pool Protocol Review Detailed Findings

RP-13 Divide before Multiply
Asset rocketpool: RocketAuctionManager.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

Solidity is unable to handle floating point numbers and will therefore truncate the integer during division. Thismay result in an unnecessary loss of precision when attempting to calculate lot prices at a specific block in
RocketAuctionManager.getLotPriceAtBlock() . The current implementation involves
mul(tn).div(td).mul(tn).div(td) when, ideally, all multiplication should be done prior to any division (pro-vided overflow is not a risk).
However, due to high precision of ether values, this issue is of low severity.

Recommendations

The testing team recommends performing all multiplication operations before any division whenever possible.

Resolution

The recommendation has been implemented by the development team in commit 05a24ac.

Page | 27

https://github.com/rocket-pool/rocketpool/commit/05a24acab53bbfbe72fe666854ec24c83317521a

Rocket Pool Protocol Review Detailed Findings

RP-14 Refund of Successful Challenge
Asset rocketpool: RocketDAONodeTrustedActions.sol

Status Closed: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

Rocket Pool’s Trusted Node DAO contains a set of trusted DAO members who are invited by current membersof the DAO and are required to stake a significant RPL bond. If enough of these members go offline and stopresponding to proposals, it’s possible that no more proposals could be passed. As a result, Rocket Pool includesa mechanism that allows regular nodes to challenge trusted DAO members. If the member does not respondwithin a given window, they are removed from the trusted DAO and their RPL bond is not returned.
To submit a challenge, a regular node must pay some ETH (to prevent spam). However, this ETH is not returnedto the challenger if the challenge is found to be successful.

Recommendations

The testing team recommends refunding the ETH value used to challenge a trusted DAO member in
RocketDAONodeTrustedActions.sol.actionChallengeDecide() .
Although a successful challenger would likely be rewarded out-of-band for their meritorious service, it may beworthwhile to explicitly reward the challenger with a portion of the kicked member’s RPL bond.
Additionally, the ETH sent to the contract could be better utilised by sending it to the RocketVault , should achallenge be unsuccessful.

Resolution

The development team decided it is safer to burn ETH that is used to challenge other trusted DAO nodes inorder to remove all opportunities to game the challenge mechanism.

Page | 28

Rocket Pool Protocol Review Detailed Findings

RP-15 Inaccurate calculation of getTotalEffectiveRPLStake
Asset rocketpool: RocketNodeStaking.sol

Status Closed: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

Calculations for RocketNodeStaking.getTotalEffectiveRPLStake() will produce unwanted results when
some nodes have more than the 150% capacity (node.per.minipool.stake.maximum) but the network as awhole has not yet achieved the maximum percentage.
In the following, the calculation acts as if the RPL distribution is evenly balanced throughout all nodes.

80 uint256 maxRplStake = rocketDAOProtocolSettingsMinipool . getHalfDepositUserAmount ()
.mul(rocketDAOProtocolSettingsNode . getMaximumPerMinipoolStake ())82 .mul(rocketMinipoolManager . getMinipoolCount ())
.div(rocketNetworkPrices . getRPLPrice ())

While it is true that maxRplStake correctly reflects the amount of RPL corresponding towhen all node operatorsstake the maximum RPL, this can be larger than the actual effective RPL total when some nodes stake over 150%but others don’t.
As an example, consider a Rocket Pool network consisting of 2 node operators (eachwith a singleminipool). NodeA stakes the minimum 10% (1.6 ether worth of RPL), and Node B stakes 200% (32 ether worth of RPL). As such,the results for getNodeEffectiveRPLStake() are equivalent to 1.6 and 24 ether respectively (with Node B lim-
ited to 150%). This gives a sum equivalent of 25.6 ether. However, the current getTotalEffectiveRPLStake()
implementation only limits the stake to a maximum of 150%× 2× 16 = 48 ether worth of RPL. As
getTotalRPLStake() returns 33.6 ether worth of RPL, getTotalEffectiveRPLStake() returns the full 33.6,
counting all of Node B’s stake towards the total.
From another perspective, Node B’s funds are truncated in the numerator but not the denominator, resulting ina smaller share of total rewards.
As can be seen, getTotalEffectiveRPLStake() truncates to an upper bound, but not an exact value. The
impact is primarily felt in RocketClaimNode.getClaimRewardsPerc() , which is used to distribute RPL rewards
proportional to each node’s share of the total effective stake(i.e. ∝ getNodeEffectiveRPLStake(node).div(getTotalEffectiveRPLStake())). When
getTotalEffectiveRPLStake() returns a larger value, each node receives a smaller share of claim rewards.
For the example above, it is as if there is an extra 3rd node operator staking 8 etherworth of RPL. These remainingclaim rewards are left in the rewards pool to be distributed in subsequent claim intervals. Although the originalrecipients will receive some of their funds in later intervals, some will also be distributed to Trusted Node DAOmembers, the Protocol DAO treasury, and new node stakers.
While losses from this inaccuracy can be thought to be distributed proportionally across all node operators, thatis not actually true. Given gas fee overheads comprise a comparatively larger portion of rewards for smaller RPLstakers, this can understood to disproportionately affect them. That is, small nodes have lower profit margins,so any losses affect them more.

Page | 29

Rocket Pool Protocol Review Detailed Findings

This may effect the validity of economic incentive analysis, used to ensure that it is profitable for small nodes topay the gas fees to claim every interval. There may even be incentive for RPL whales to stake well over 150% inorder to make it unprofitable for small stakers to claim, thus leaving their rewards to be distributed in subsequentrounds. (As allocated rewards must be claimed within the ≈ 14 day interval or they are lost.)

Recommendations

Consider adjusting getTotalEffectiveRPLStake() such that it returns the equivalent of
total = 0
for node in all_registered_node_operators:

total += getNodeEffectiveRPLStake(node)
return total

It may be infeasible/unreasonable to implement this in a gas-efficient manner (if gas costs are proportional tothe number of nodes, there could be risk of exceeding the block gas limit).
In that case, it may be necessary to leave the current implementation unchanged. Then, the testing team rec-ommends that this inaccuracy is clearly documented, and node operators are informed that staking rewardsshould be expected to reduce slightly when some nodes stake more than the maximum (this is still distributedin subsequent claim intervals).
If possible, try to stop node operators from being able to affect the scale of this inaccuracy.
Consider this in any analysis of economic incentives to ensure the relevant properties still hold, and adjust feedistribution values as needed. Because the scale of this inaccuracy can be controlled by node operators, it maybe difficult to predictably model.

Resolution

This issue has been acknowledged by the development team but no feasible technical fix could be identified,hence this is marked closed.

Page | 30

Rocket Pool Protocol Review Detailed Findings

RP-16 Reliance on ETH1 Provider
Asset rocketpool-go

Status Closed: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

Rocket Pool contacts are stored centrally on-chain in the RocketStorage contract. When the
rocketpool-go library is interacting with any contracts other that the RocketStorage contract these areretrieved on-chain.
ETH1 providers may be run locally as Geth nodes or users may select third parties to provide ETH1 services.The following is a potential vulnerability related to using untrusted ETH1 providers.
If the ETH1 provider were to deliberately return a malicious address from an eth_call , they may have usersexecute transactions to the wrong contract.
For example if a malicious ETH1 provider were to modify the address returned for the call
RocketStorage.getContract(’rocketNodeDeposit’) , the node may execute a deposit that transfers 16 or32 ETH to a malicious contract owned by the ETH1 provider.

Recommendations

Ensure that node operators are aware of the security reliance when using third party ETH1 providers.

Resolution

This has been acknowledged by the development team and has determined not technically actionable.

Page | 31

Rocket Pool Protocol Review Detailed Findings

RP-17 Ineffective RPL Staking Collateral
Asset rocketpool: RocketMinipoolStatus.sol

Status Open

Rating Informational

Description

Nodes operators stake RPL intended for use as collateral that can be sold by the protocol to protect rETH holdersfrom any losses in their balance. The current implementation makes use of the RPL collateral only after all ETHcollateral is exhausted. Given current penalty calculations, it is highly unlikely that a validator could exit with lessthan 16 ETH (even when slashed). As such, the RPL collateral is unlikely to ever be used, even for very mediocrenode operators who do not increase staking rewards.
While there is some technical risk that an honest validator could be slashed — that a bug in the client can causea slashable offence — this is quite minor. Similarly, there is some security risk that the validator’s key could becompromised, allowing a malicious party to perform a slashable offence, though this can be reasonably mitigatedby a conscientious node operator. The main cause of a slashable offence is due to ignorant or malicious actionson the part of the validator.
There is also some external risk with regards to inactivity penalties that cannot be fully removed (e.g. networkdisconnection due to natural disaster or other infrastructure failure), but the penalties are such that it is highlyunlikely that this would ever result in a balance decrease over a reasonable staking period.
As such, the main risk of any staking losses is towards the Rocket Pool network from a malicious or negligentnode operator. There is little risk to an honest node operator such that it should be reflected in RPL stakingrewards. Instead, the rewards should reimburse the operator for opportunity costs associated with locking upvalue in RPL.
Given that slashing penalties are currently on the order of only≈ 2 ETH in normal network conditions, a bondedvalidator should always have enough ETH balance remaining to cover the User’s original 16 ETH deposit, evenif the validator is extremely negligent.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.
Confirm current Eth2 staking penalty calculations and include them in any decisions regarding RPL staking re-wards and penalties.
It may be worthwhile penalising exited validators with a balance less than 32 ETH (less than they started with),even though rETH has no danger of losing value. By slashing some RPL from these validators, the protocol isrecovering some lost profits that it should expect from a conscientious validator. It is not unreasonable to expectthat an exited validator should return some profit.
One implementation could involve slashing RPL proportional to the deficit in the final balance (amount belowthe 32 ETH starting balance).

Page | 32

Rocket Pool Protocol Review Detailed Findings

RP-18 Likely Gas Savings When Setting RocketStorage Values
Asset rocketpool: RocketStorage.sol

Status Resolved: See Resolution
Rating Informational

Description

The RocketStorage.onlyLatestRocketNetworkContract() modifier can be implemented in amore gas-efficientmanner, resulting in widespread gas savings.
The RocketStorage contract is used for centralized data storage, allowing other contracts to be replaced
without migrating data. To prevent unauthorized storage modification, every set*() and delete*() func-
tion has the onlyLatestRocketNetworkContract modifier. To allow direct modification during deployment,
onlyLatestRocketNetworkContract checks for a boolean flag that is set upon deployment completion (see
below).

26 if (boolStorage [keccak256 (abi. encodePacked (" contract . storage . initialised "))] == true) {

Two keccak256 operations are performed in order to access this boolean value:
1. To determine the mapping key (the result of

keccak256(abi.encodePacked("contract.storage.initialised"))).
2. To determine the location of the value in storage (keccak256(uint256(4) . key)).4

Although the gas used for these keccak256 operations is relatively small (on the order of of 36 gas per operation[4]),this is highly trafficked code and thus has a comparatively larger effect on the deployment and normal operationof the Rocket Pool network contracts.
Because the key is fixed, it is possible to write an equivalent check that requires no keccak256 operations likeso:
// NOTE:
// boolStorage is at slot 4
// ‘keccak256 (uint256 (4) . keccak256 (" contract . storage . initialised "))‘ evaluates to the
// hexnumber below
assembly {

let isInit := sload (0 xd58b0b884eb0b2eb26bfe63b69fb2d6af87f743960a008c65a1ab0385746612a)
if eq(isInit , true) {
...

}

While this is possible to do using inline assembly, it is clearer and less error prone to simply store the initialisedflag as a standalone state variable (and thus stored at a small-integer storage location).
4See https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_storage.html#mappings-and-dynamic-arrays

Page | 33

https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_storage.html#mappings-and-dynamic-arrays

Rocket Pool Protocol Review Detailed Findings

As of testing, the solc optimizer does not compute keccak256 at compile-time, so these optimizations canonly be implemented by a programmer.5

Recommendations

Consider using a standalone state variable to represent "contract.storage.initialised" , as described above.
This also has some security benefit in preventing a registered network contract from later setting
"contract.storage.initialised" to false (see RP-12).
NOTE: because this is a change to the underlying RocketStorage contract, it cannot be applied as an upgradeto an existing Rocket Pool system.

Resolution

The development team has resolved this issue by updating the line of code below from
if (boolStorage [keccak256 (abi. encodePacked (" contract . storage . initialised "))] == true) {

to
if (storageInit == true) {

By using state variables to store the deployed status of the RocketStorage contract, the end-user is able to
save a small amount of gas each time they interact with Rocket Pool’s smart contracts.
These changes are reflected in commit 1879fac.

5For instance, moving the keccak256(abi.encodePacked("contract.storage.initialised")) key to a private constant has no
effect. (Though using a precomputed key of 0x1a655af42e38e46646ca444968abc315a08696908ac9b25256e67e1a25f98eb4 would be animprovement.)

Page | 34

https://github.com/rocket-pool/rocketpool/commit/1879fac850dced0d215bb4d2cfef6aeaec301479

Rocket Pool Protocol Review Detailed Findings

RP-19 Gas Savings via Bulk and Update Storage Functionality
Asset rocketpool: RocketStorage.sol

Status Open

Rating Informational

Description

The RocketStorage contract is used for centralized data storage, allowing other contracts to be replaced with-out migrating data, and as a registry of relevant contract addresses. While this pattern offers great flexibility andavoids complicated proxy patterns, any storage access incurs the additional gas overheads involved with calls toexternal contract functions. With a few additional features, it should be possible to greatly reduce the numberof external function calls performed.
Less gas overheads for node operators and DAO members can make it reasonable to reduce or divert RPL infla-tion rewards without affecting the validity of economic incentives.
The identified features are described in more detail below, but both focus on minimizing cases where multiple,consecutive calls to RocketStorage are required.

Update Operations

A common use of RocketStorage is to adjust counter or balance values. Currently, this is done via a “get”
operation followed by a “set”, like in RocketNodeStaking (below):
function getTotalRPLStake () override public view returns (uint256) {42 return getUintS ("rpl. staked . total . amount ");
}44 function setTotalRPLStake (uint256 _amount) private {

setUintS ("rpl. staked . total . amount ", _amount);46 }
function increaseTotalRPLStake (uint256 _amount) private {48 setTotalRPLStake (getTotalRPLStake ().add(_amount));
}50 function decreaseTotalRPLStake (uint256 _amount) private {

setTotalRPLStake (getTotalRPLStake ().sub(_amount));52 }

Here, the value returned by getUintS is only used for the subsequent set operation, and is otherwise unneededby the calling contract.
As such, implementing an arithmetic update operation like RocketStorage.addUintS() will allow an equivalent
increaseTotalRPLStake to make only a single external call:
function increaseTotalRPLStake (uint256 _amount) private {

addUintS ("rpl. staked . total . amount ", _amount);
}

Page | 35

Rocket Pool Protocol Review Detailed Findings

Bulk/Batch Operations

Almost all Rocket Pool contract functions begin with a series of RocketStorage.getContractAddress() calls,to identify the current addresses of the relevant Rocket Pool contracts. These can be condensed into a externalfunction call, which can noticeably reduce gas costs.
Similarly, many functions contain a series of consecutive storage modifications, each making an external callto RocketStorage . While it is more complicated to bundle these modifications for heterogeneous types, it is
comparatively simple to group “setters” for the same type. This would have a noticable gas saving in high trafficfunctions like RocketRewardsPool.claim() , where the 9 setUint calls involving the following keys could
feasibly be bundled into a single external bulkSetUint() call:

• "rewards.pool.claim.interval.total"

• "rewards.pool.claim.interval.block.start"

• "rewards.pool.claim.interval.contract.perc.current"

• "rewards.pool.claim.interval.contract.total"

• "rewards.pool.claim.interval.contract.perc.current"

• "rewards.pool.claim.interval.contract.allowance"

• "rewards.pool.claim.interval.claimers.total.current"

• "rewards.pool.claim.interval.contract.total"

• "rewards.pool.claim.interval.block.last"

Recommendations

Consider implementing additional RocketStorage functionality that allows batch and/or update operations, toreduce the number of external calls made during deployment and, therefore, gas costs. Refactor existing codeto take advantage of these operations.
NOTE: because this involves changes to the underlying RocketStorage contract, it cannot be applied as an up-grade to an existing Rocket Pool system.

Update Operation Recommendations

As not all relevant code is as easily refactored as increaseTotalRPLStake() , a more flexible interface wouldbe to implement update functions in the form of
function addUint (bytes32 _key , uint _value) external returns (uint _result);

Where the value returned is either result of the operation or the original value at _key (similar to an atomic
“fetch-and-add” instruction6). Returning a value allows use in more situations where the calling code makessome associated require check.

6See https://en.wikipedia.org/wiki/Fetch-and-add

Page | 36

https://en.wikipedia.org/wiki/Fetch-and-add

Rocket Pool Protocol Review Detailed Findings

Given that RocketStorage is a trusted contract, this refactoring is not expected to introduce any re-entrancyvulnerabilities.
Also implement similar functions for the uint and int types for the add , sub operations (and potentially
mul and div)

Bulk/Batch Operation Recommendations

Strongly consider implementing bulk operation functions for RocketStorage .
At minimum, a bulk address “getter” will have a noticeable reduction in the number of external calls required.Such an operation could look like:
function getAddresses (bytes32 [] calldata _keys) external returns (address [] memory);

Consider implementing bulk “getter” and “setter” functions for the various storage types. Although these maynot necessarily be used as much in the current code, they provide “future proofing”. Such functions could looklike:
function bulkGetUint (bytes32 [] calldata _keys) external returns (uint [] memory);
function bulkSetUint (bytes32 [] calldata _keys , uint [] calldata _values) external ;
function bulkSetBool (bytes32 [] calldata _keys , bytes calldata _bits) external ;

Also consider bulk operations for heterogeneous types. Evaluate whether any gas savings involved are sufficientto justify the extra programming complexity involved with “manual” abi-encoding. Such an interface could looklike the following:
enum StorageType { Address , Uint , String , Bytes , Bool , Int , Bytes32 }
function bulkGetStorage (bytes32 [] calldata _keys , StorageType [] calldata _types) external

returns (bytes [] memory _encodedValues);
function bulkSetStorage (bytes32 [] calldata _keys , StorageType [] calldata _types , bytes []

calldata _encodedValues) external ;

Page | 37

Rocket Pool Protocol Review Detailed Findings

RP-20 RocketTokenRPL.swapTokens gas savings
Asset rocketpool: RocketTokenRPL.sol

Status Resolved: See Resolution
Rating Informational

Description

Redundant checks in swapToken can lead to increase gas cost of the function call. Although providingmore user-
friendly errormessages, a number of these checks are performed as part of the base rplFixedSupplyContract ,proving redundant as they are integrated as part of the ERC20 token checks.

• At line [193] require(rplFixedSupplyContract.balanceOf(address(msg.sender)) > 0) is also checked
as part of ERC20._transfer .

• At line [195] require(rplFixedSupplyContract.balanceOf(address(msg.sender)) > _amount) makes
the above check redundant, and is also checked as part of ERC20._transfer .

• At line [199] The requirement for allowance is also checked as part of ERC20._transferFrom .

Recommendations

The testing team recommends considering the tradeoffs between user-friendly revert messages, and gas savings.
As these requires are performed as part of ERC20 base functionality, they can be omitted from the RocketTokenRPLcontract for gas savings during runtime and deployment.

Resolution

The development team has removed the redundant checks found in the swapTokens() function. This can befound in commit d8667dc.

Page | 38

https://github.com/rocket-pool/rocketpool/commit/d8667dcb3b3b7ba990a5cd6f591a7ed36a6b9aeb

Rocket Pool Protocol Review Detailed Findings

RP-21 Unhandled Errors
Asset rocketpool-go & smartnode

Status Closed: See Resolution
Rating Informational

Description

A range of errors in go are not handled correctly. These errors have been deemed as informational, as no exploitover these errors could be identified.
Related code in rocketpool-go :
// rocketpool-go/rocketpool/abi.go:52

51: }
> 52: zlibWriter.Flush()

53:

Related code smartnode

// smartnode/shared/services/wallet/validator.go:207
206: initBLS.Do(func() {

> 207: eth2types.InitBLS()
208: })

// smartnode/shared/services/rocketpool/client.go:185
184: if verbose {

> 185: c.Println(scanner.Text())
186: }

// smartnode/shared/services/rocketpool/client.go:108
107: if c.client != nil {

> 108: c.client.Close()
109: }

// smartnode/shared/services/config/config.go:120
119: for i := len(configs) - 1; i >= 0; i-- {

> 120: mergo.Merge(&merged, configs[i])
121: }

// smartnode/shared/services/beacon/prysm/client.go:53
52: func (c *Client) Close() {

> 53: c.conn.Close()
54: }

// smartnode/rocketpool-cli/wallet/init.go:65
64: // Clear terminal output

> 65: term.Clear()
66:

Page | 39

Rocket Pool Protocol Review Detailed Findings

Recommendations

Consider propagating or handling the errors for each of these cases.
Consider integrating errcheck and other security linters into the CI workflow.

Resolution

This issue is outdated and does not match the latest commit targets. As a result, this issue has been closed infavour of RP-36 .

Page | 40

https://github.com/kisielk/errcheck

Rocket Pool Protocol Review Detailed Findings

RP-22 Unused and Lack of Constant Variables
Asset rocketpool: contracts/contract/*

Status Open

Rating Informational

Description

There are a number of variables used throughout the Rocketpool smart contract system that can be specificallydeclared as constant variables using the constant keyword. When declared as state variables, these requireadditional gas costs to set and access from storage.
Additionally, there are some variables that are unused and therefore can be omitted.

• RocketBase.version should be defined as a constant, or immutable if it’s desirable that the value canbe set during construction.
• Omit calcBase in RocketDAONodeTrusted.sol as it is unused.
• Define calcBase as a constant wherever it is used.

In particular, replace the following calcBase definitions:
– RocketClaimNode.sol line [50]
– RocketClaimTrustedNode.sol line [17]
– RocketRewardsPool.sol line [19]
– RocketNetworkFees.sol line [47]
– RocketNodeStaking.sol line [187]
– RocketNetworkBalances.sol line [63,93]
– RocketDAOProposal.sol line [23]
– RocketTokenRPL.sol 10^18 in inflationCalculate() lines [139,144]
– RocketDAONodeTrustedProposals.sol line [23]
– RocketTokenRETH.sol line [73]
– RocketDAOProtocolProposals.sol line [22]
– RocketDAOProtocolActions.sol line [20]
– RocketNetworkPrices.sol line [68]
– RocketMinipoolStatus.sol lines [61,118]
– RocketAuctionManager.sol lines [137,152,174,217,248]

• daoNameSpace and daoMemberMinCount in RocketDAONodeTrustedProposals

• totalInitialSupply in RocketTokenRPL

• RocketMinipoolDelegate.rocketStorage , RocketMinipool.rocketStorage , and
RocketBase.rocketStorage can be set as immutable .

Page | 41

Rocket Pool Protocol Review Detailed Findings

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.
Consider updating state variables to be declared constant whenever possible and omit any unused variablesfrom contracts that do not require them. Both these changes will save some gas and improve maintainability.
Replace storage key string literals with centrally defined constants wherever possible.

Page | 42

Rocket Pool Protocol Review Detailed Findings

RP-23 Consolidation of RocketDAONodeTrustedActions
Asset rocketpool: RocketDAONodeTrustedActions.sol

Status Resolved: See Resolution
Rating Informational

Description

Below is a list of small changes that can be made to the RocketDAONodeTrustedActions.sol contract to adduser clarity and maintain code consistency:

• The current standard is to call getContractAddress and cast it into its corresponding interface in thesame line of code. i.e.
RocketDAONodeTrustedInterface rocketDAONode = RocketDAONodeTrustedInterface (

getContractAddress (" rocketDAONodeTrusted "));

However, _memberJoin() at lines [86,87] does not follow this same pattern and instead accesses the
address from RocketStorage , then later casting this address into its corresponding interface on anotherline. This can be consolidated into a single line as previously mentioned.

• When a registered node attempts to join as a member with a sufficient RPL bond, it is unclear whether theuser was invited in the first place. Consider checking if memberInvitedBlock is zero before checking ifthe invite was expired.

Recommendations

The testing team recommends implementing the above changes to RocketDAONodeTrustedActions.sol .

Resolution

The development team has decided not to implement the changes pertaining to the casting of addresses. Anadditional revert check has been added to ensure a nodewas invited to join the trustedDAO. This is implementedin commit f8bb4aa.

Page | 43

https://github.com/rocket-pool/rocketpool/commit/f8bb4aa3bd6149fcc018bc0bfd4e7c7588d8388f

Rocket Pool Protocol Review Detailed Findings

RP-24 Lack of Input Validation
Asset rocketpool: contracts/contract/dao/*

Status Open

Rating Informational

Description

This section details instances where input validation would prove useful in preventing function misuse:

• RocketDAONodeTrustedUpgrade:_upgradeContract() does not check if the _contractABI value is anempty string before setting.
• RocketDAONodeTrustedUpgrade:_upgradeABI() does not check if the existingAbi is the same as

parsed _contractAbi . Therefore, an event will be emitted for an ABI upgrade when no such upgradeoccurred.

Recommendations

Ensure that the changes are understood and acknowledged, and consider implementing the suggestions above.

Page | 44

Rocket Pool Protocol Review Detailed Findings

RP-25 Suboptimal Definition of MiniPool Storage Layout
Asset rocketpool: RocketMinipool.sol & RocketMinipoolDelegate.sol

Status Resolved: See Resolution
Rating Informational

Description

The RocketMinipool contract refers to RocketMinipoolDelegate via delegatecall for the majority of its
functionality. Known as a “Delegate Proxy Pattern”, this is useful to reduce minipool deployment costs but it isimportant that both contracts maintain a storage layout consistent with each other (see [5, section 4]). Whilethe current implementations of RocketMinipool and RocketMinipoolDelegate define a consistent storage layout,this is done in a suboptimal manner, where mistakes can easily be introduced.
Both contracts define a storage layout (at lines [14-41] and [28-55] respectively) but, by defining the layouttwice, the risk of “copy-paste errors” is introduced, and both definitions must be consistent to avoid unexpectedbugs (particularly if the RocketMinipoolDelegate is upgraded in production). It is preferable to define the storagelayout centrally, where both inherit from this definition.

Recommendations

Consider implementing a “ MinipoolStorageLayout ” contract (or equivalent) that defines all the state variables
used by the RocketMinipool and RocketMinipoolDelegate contracts, then have both contracts inherit thisdefinition.
After the Rocket Pool network is in production, this storage layout contract should be kept immutable. A goodpractice to enforce this is to assert, in CI, that the MinipoolStorageLayout.sol matches a known hash, so anychanges are visible as failed tests.
Any subsequent upgrades that change the storage layout should be implemented in new contracts that inheritfrom the original (e.g. contract MinipoolStorageLayoutv2 is MinipoolStorageLayout). This ensures thatnew state variables are located at a later storage slots and the original storage layout is unchanged, so any existingminipool instances still function as expected.

Resolution

The development team has implemented the above changes in commit 1bfa2a7.

Page | 45

https://github.com/rocket-pool/rocketpool/commit/1bfa2a75284b13993fd8ebdf86abb1b25342b41d

Rocket Pool Protocol Review Detailed Findings

RP-26 DAO Settings Checks
Asset rocketpool: contracts/contracts/dao/protocol/settings/*

Status Open

Rating Informational

Description

The testing team feels that a number of DAO related actions require careful consideration when transitioningfrom the guardians to a DAO.
The following items require additional checks to ensure safety for future DAO interaction:

• RocketDAOProtocolSettingsInflation.sol

– rpl.inflation.interval.rate - If set less than RocketTokenRPL.totalSupply() thenwill cause
a reverts on RocketTokenRPL.inflationMintCalculate()

– rpl.inflation.interval.blocks and rpl.inflation.interval.rate are commented to be de-pendent on each other, but can be set separately.

Recommendations

The testing team recommends precautions when updating DAO settings as guardians, but also encourages ad-ditional checks and requirements when transitioning to a full DAO proposal/voting process.

Page | 46

Rocket Pool Protocol Review Detailed Findings

RP-27 Rounding of Auction Bids
Asset rocketpool: RocketAuctionManager.sol

Status Open

Rating Informational

Description

Rocket Pool’s auction system is designed to cover the loss of ETH caused by slashed node operators. Usersparticipate in aDutch style auction to claimRocket Pool Tokens (RPL) at a discount. These auctions are separatedinto lots which are then bid on. When a bid is placed on a lot, a portion of the lot is set aside based on thecurrent lot price. The auction system performs some small rounding for each bid claimed. This can be seen in
RocketAuctionManager.sol line [249]:
uint256 rplAmount = calcBase .mul(bidAmount).div(currentPrice);

Recommendations

The testing team recommends transferring the leftover wei to the last claimer of the lot, to simply avoid residualRPL remaining in the Auction contract.

Page | 47

Rocket Pool Protocol Review Detailed Findings

RP-28 Improper Emitting of Events
Asset rocketpool: RocketDAOProposal.sol & RocketDAONodeTrustedActions.sol

Status Resolved: See Resolution
Rating Informational

Description

The RocketDAOProposal.add() and RocketDAOProposal.execute() functions emit the events
ProposalAdded and ProposalExecuted respectively. Both these functions utilise msg.sender as the proposer

or executer argument. If these functions are called via the RocketDAONodeTrustedProposals contract (which
is the correctmethod of interactingwith proposals), the proposer and executer argumentswill be the address
of the RocketDAONodeTrustedProposals contract instead of the intended proposer or executer .
Additionally, the event ActionReplace in RocketDAONodeTrustedActions.actionReplace() sets both thecurrent member argument and the new member argument to the same address.

Recommendations

The testing team recommends changing the values of the events emitted in RocketDAOProposal to the trusted
DAO member that called these functions in RocketDAONodeTrustedProposals . We also recommend chang-
ing the second argument in the emitted event in RocketDAONodeTrustedActions.actionReplace() to the
member’s address that is replacing the current member.
Implement relevant tests.

Resolution

The development team has implemented the recommended changes.
RocketDAONodeTrustedActions.actionReplace() has been removed altogether from the
RocketDAONodeTrustedActions contract. See commit b8356dc for changes.

Page | 48

https://github.com/rocket-pool/rocketpool/commit/b8356dc438039a66048b32f36c0c02a28340b955

Rocket Pool Protocol Review Detailed Findings

RP-29 Potential Settings “Getter” Gas Optimizations
Asset rocketpool: contracts/contract/dao/*/settings

Status Open

Rating Informational

Description

Although the Rocket Pool settings design allows for flexible upgradability and management by the DAOs, ac-cessing most settings values requires two function calls to external contracts.
Most getXXX settings “getter” functions involve access to value held in RocketStorage , so any contractaccessing that setting first needs to make an external call to the relevant settings contract, which then calls
RocketStorage . This can result in significant gas overheads, particularly for small, regularly executed functions
that need to first get the relevant settings contract address from RocketStorage .
Should it be acceptable for the relevant storage keys to remain relatively fixed, the number of external callsrequired to access a setting can be reduced to a single external call to RocketStorage . This can be achieved by
including the “getters” as local functions in the relevant contracts that use them.
The testing team acknowledge that thismay hinder upgradability e.g. should it be desirable tomodify the relevantsetting storage keys. However, the runtime gas savings should be significant for frequently accessed settings.
These runtime savings will likely outweigh the deployment costs associated with the increased bytecode sizes.

Recommendations

As discussed, consider implementing private settings “getter” functions in an abstract contract that relevantcontracts inherit from (at least for settings whose value is kept in RocketStorage).
Implementing this as an abstract contract still helps avoid code duplication, allowing the settings functions to bemanaged more centrally.

Page | 49

Rocket Pool Protocol Review Detailed Findings

RP-30 RocketMinipool Deployment Gas Optimisations
Asset rocketpool: RocketMinipool.sol

Status Open

Rating Informational

Description

RocketMinipool is a frequently deployed contract, with one deployed for every eth2 validator. As such, it
is important to minimize deployment gas costs (which is the primary purpose of the proxy design that utilises
RocketMinipoolDelegate). The testing team have identified some gas optimising modifications that may beworth considering.
These are primarily associated with reducing deployment costs, but some runtime gas optimisations are alsoincluded:

• Avoiding external calls in OnlyRegisteredMinipool() — if RocketMinipool contract instances are never
upgraded (only the RocketMinipoolDelegate behind them), this modifier is only ever used to differenti-ate between the minipool proxy and the delegate contract.
Provided this is the case, an effective check could just be to check the value of a local state variable like
isDelegate != true . Another equivalent approach could be to expand the existing status variable
such that the RocketMinipoolDelegate is constructed with an invalid status. onlyMinipool() couldthen look something like this:
modifier onlyMinipool (address _minipoolAddress) {

require (status != MinipoolStatus .Invalid , " Invalid minipool ");
_;

}

• Reduce minipool bytecode size (and thus deployment costs) via moving construction/initialization code to
RocketMinipoolDelegate .
The majority of the logic contained in RocketMinipool.constructor() could be moved to a function in
RocketMinipoolDelegate and executed as a delegatecall during construction.
This would also remove the need to include RocketNetworkFeesInterface in RocketMinipool (though
the majority of the associated bytecode is likely optimized away).
Thiswould also allow for themajority of the state variable definitions to be removed from RocketMinipool

(as long as both contracts still define the rocketStorage variable at the same slot).
NOTE: to prevent someone from having an unexpected impact by directly calling
RocketMinipoolDelegate.initialize() , the delegate’s constructor should ensure that the delegate
does not have an “Initializable” status, the initialize() equivalent should only be callable when the
contract has an “Initializable” status, and within initialize() the status should be set such that the
contract is no longer “Initializable”.7

• It’s possible there are some bytecode savings introduced by importing an alternative to the
RocketStorageInterface which only describes getAddress() (though this may be already optimized
away).

7This is somewhat similar to the OpenZeppelin Beacon pattern

Page | 50

https://docs.openzeppelin.com/contracts/4.x/api/proxy#beacon

Rocket Pool Protocol Review Detailed Findings

Recommendations

Ensure that the changes are understood and acknowledged, and consider implementing the suggestions above.

Page | 51

Rocket Pool Protocol Review Detailed Findings

RP-31 Distributed Storage Key Namespace Design and Organisation
Asset rocketpool: contracts/*

Status Open

Rating Informational

Description

The RocketStorage contract is used for centralized data storage, allowing other contracts to be replaced with-out migrating data. Values are stored in mappings keyed by bytes32, with separate mappings for each type.
The keys used are defined throughout the codebase, with some keys used across multiple contracts, others usedacross several but set only by one, and others used privately by a single contract. Although key prefixes like
"contract." and "rewards.pool.claim." provide some context
There is some risk that maintainers accidentally reuse a key to store an unrelated value, resulting in a clash wherestorage values important to another contract are overwritten.
While no bugs have been identified in the current codebase associated with this issue, this can hinder long termmaintainability — making it easy to accidentally introduce storage key clashes in unrelated contracts.
Consider the following example of a simple namespace clash, which can arise due to ambiguous encoding.
key_a = keccak256 (abi. encodePacked (" rocket . network . price ",address (0)))

key_b = keccak256 (abi. encodePacked (" rocket . network ", uint64 (3346300320100986928) , address
(0)))

// where bytes8 (3346300320100986928) == bytes8 (". price00 ")

Here, the keys evaluate to the same storage slot, even though the prefixes are different.
See also the related issue RP-12.

Recommendations

Key prefixes/namespaces should be delimited from arguments via an otherwise unused character e.g. “.” Thisshould also be used as a separator in settingsNameSpace .
It may be useful to distinguish between delimiters for sub-namespaces and the end of a key prefix (e.g. “.” is usedwithin a key to separate hierarchical namespaces, but “!” is used to mark the end of a particular key, separatingthe key prefix from the key argument values).
Alternatively, you could enforce fixed key prefix sizes, such that the first 32 bytes of a keys pre-image are alwaysthe key prefix, and everything after is a “key argument”.
Consider implementing a centralized registry of storage key namespaces and associated contracts, optimallydocumenting or enforcing which protocol contracts are "responsible" for the storage keys (i.e. read vs writeaccess). This can help identify bugs, should an unrelated contract start using the same key for something else.
Consider architecting a more formal namespace scheme, so it is more clear what keys are reserved for which

Page | 52

Rocket Pool Protocol Review Detailed Findings

contracts. For “privately controlled” values, one option could be to more rigorously mirror the path of the solidityfiles within the repo.
One feasible implementation could be to define all storage key prefixes and namespaces in a single abstractcontract that all Rocket Pool contracts inherit from. Because Solidity constants are replaced at compile time8,this should incur no runtime or deployment performance costs.
Consider checking that keys do not clash with any used elsewhere.
Ensure that the changes are understood and acknowledged, and consider implementing the suggestions above.

8See https://docs.soliditylang.org/en/v0.7.6/contracts.html#constant-and-immutable-state-variables

Page | 53

https://docs.soliditylang.org/en/v0.7.6/contracts.html#constant-and-immutable-state-variables

Rocket Pool Protocol Review Detailed Findings

RP-32 Functions Can Be Declared External For Gas Savings
Asset rocketpool: contracts/*

Status Open

Rating Informational

Description

The following functions can be declared external for some small gas savings:

• RocketAuctionManager.getLotIsCleared()

• RocketMinipoolDelegate.getStatus()

• RocketMinipoolDelegate.getStatusBlock()

• RocketMinipoolDelegate.getStatusTime()

• RocketMinipoolDelegate.getDepositType()

• RocketMinipoolDelegate.getNodeAddress()

• RocketMinipoolDelegate.getNodeFee()

• RocketMinipoolDelegate.getNodeDepositBalance()

• RocketMinipoolDelegate.getNodeRefundBalance()

• RocketMinipoolDelegate.getNodeDepositAssigned()

• RocketMinipoolDelegate.getNodeWithdrawn()

• RocketMinipoolDelegate.getUserDepositBalance()

• RocketMinipoolDelegate.getUserDepositAssigned()

• RocketMinipoolDelegate.getUserDepositAssignedTime()

• RocketMinipoolDelegate.getStakingStartBalance()

• RocketMinipoolDelegate.getStakingEndBalance()

• RocketClaimDAO.getEnabled()

• RocketClaimDAO.spend(string,address,uint256)

• RocketClaimNode.getEnabled()

• RocketClaimNode.getClaimRewardsAmount(address)

Page | 54

Rocket Pool Protocol Review Detailed Findings

• RocketClaimTrustedNode.getEnabled()

• RocketClaimTrustedNode.getClaimRewardsAmount(address)

• RocketDAONodeTrusted.getMemberQuorumVotesRequired()

• RocketDAONodeTrusted.getMemberIsValid(address)

• RocketDAONodeTrusted.getMemberAt(uint256)

• RocketDAONodeTrusted.getMemberMinRequired()

• RocketDAONodeTrusted.getMemberLastProposalBlock(address)

• RocketDAONodeTrusted.getMemberID(address)

• RocketDAONodeTrusted.getMemberEmail(address)

• RocketDAONodeTrusted.getMemberJoinedBlock(address)

• RocketDAONodeTrusted.getMemberProposalExecutedBlock(string,address)

• RocketDAONodeTrusted.getMemberRPLBondAmount(address)

• RocketDAONodeTrusted.getMemberReplacedAddress(string,address)

• RocketDAONodeTrusted.getMemberIsChallenged(address)

• RocketDAONodeTrusted.bootstrapMember(string,string,address)

• RocketDAONodeTrusted.bootstrapSettingUint(string,string,uint256)

• RocketDAONodeTrusted.bootstrapSettingBool(string,string,bool)

• RocketDAONodeTrusted.bootstrapUpgrade(string,string,string,address)

• RocketDAONodeTrusted.bootstrapDisable(bool)

• RocketDAONodeTrusted.memberJoinRequired(string,string)

• RocketDAONodeTrustedActions.actionJoin()

• RocketDAONodeTrustedActions.actionJoinRequired(address)

• RocketDAONodeTrustedProposals.propose(string,bytes)

• RocketDAONodeTrustedProposals.vote(uint256,bool)

• RocketDAONodeTrustedProposals.cancel(uint256)

• RocketDAONodeTrustedProposals.execute(uint256)

• RocketDAONodeTrustedProposals.proposalInvite(string,string,address)

• RocketDAONodeTrustedProposals.proposalLeave(address)

• RocketDAONodeTrustedProposals.proposalReplace(address,string,string,address)

Page | 55

Rocket Pool Protocol Review Detailed Findings

• RocketDAONodeTrustedProposals.proposalKick(address,uint256)

• RocketDAONodeTrustedProposals.proposalSettingUint(string,string,uint256)

• RocketDAONodeTrustedProposals.proposalSettingBool(string,string,bool)

• RocketDAONodeTrustedProposals.proposalUpgrade(string,string,string,address)

• RocketDAONodeTrustedSettings.getSettingUint(string)

• RocketDAONodeTrustedSettings.setSettingUint(string,uint256)

• RocketDAONodeTrustedSettings.getSettingBool(string)

• RocketDAONodeTrustedSettings.setSettingBool(string,bool)

• RocketDAONodeTrustedSettingsMembers.getQuorum()

• RocketDAONodeTrustedSettingsMembers.getRPLBond()

• RocketDAONodeTrustedSettingsMembers.getMinipoolUnbondedMax()

• RocketDAONodeTrustedSettingsMembers.getChallengeCooldown()

• RocketDAONodeTrustedSettingsMembers.getChallengeWindow()

• RocketDAONodeTrustedSettingsMembers.getChallengeCost()

• RocketDAONodeTrustedSettingsProposals.getCooldown()

• RocketDAONodeTrustedSettingsProposals.getVoteBlocks()

• RocketDAONodeTrustedSettingsProposals.getVoteDelayBlocks()

• RocketDAONodeTrustedSettingsProposals.getExecuteBlocks()

• RocketDAONodeTrustedSettingsProposals.getActionBlocks()

• RocketDAONodeTrustedUpgrade.upgrade(string,string,string,address)

• RocketMinipoolManager.getMinipoolCount()

• RocketMinipoolManager.getMinipoolAt(uint256)

• RocketMinipoolManager.getNodeMinipoolCount(address)

• RocketMinipoolManager.getNodeMinipoolAt(address,uint256)

• RocketMinipoolManager.getNodeValidatingMinipoolCount(address)

• RocketMinipoolManager.getNodeValidatingMinipoolAt(address,uint256)

• RocketMinipoolManager.getMinipoolByPubkey(bytes)

• RocketMinipoolManager.getMinipoolExists(address)

• RocketMinipoolManager.getMinipoolPubkey(address)

Page | 56

Rocket Pool Protocol Review Detailed Findings

• RocketMinipoolManager.getMinipoolWithdrawalTotalBalance(address)

• RocketMinipoolManager.getMinipoolWithdrawalNodeBalance(address)

• RocketMinipoolManager.getMinipoolWithdrawable(address)

• RocketMinipoolManager.getMinipoolWithdrawalProcessed(address)

• RocketMinipoolQueue.getTotalLength()

• RocketMinipoolQueue.getTotalCapacity()

• RocketMinipoolQueue.getEffectiveCapacity()

• RocketMinipoolQueue.getNextCapacity()

• RocketNetworkBalances.getTotalRETHSupply()

• RocketNetworkBalances.getETHUtilizationRate()

• RocketNetworkFees.getNodeFee()

• RocketNetworkPrices.getRPLPrice()

• RocketNodeManager.getNodeCount()

• RocketNodeManager.getNodeAt(uint256)

• RocketNodeManager.getNodeExists(address)

• RocketNodeManager.getNodeWithdrawalAddress(address)

• RocketNodeManager.getNodeTimezoneLocation(address)

• RocketNodeStaking.getTotalEffectiveRPLStake()

• RocketNodeStaking.getNodeEffectiveRPLStake(address)

• RocketNodeStaking.getNodeMinipoolLimit(address)

• RocketRewardsPool.getRPLBalance()

• RocketRewardsPool.getClaimBlockLastMade()

• RocketRewardsPool.getClaimingContractUserTotalCurrent(string)

• RocketTokenRETH.getExchangeRate()

• RocketTokenRETH.getCollateralRate()

• RocketTokenRPL.getInflationRewardsContractAddress()

• RocketTokenRPL.inflationMintTokens()

• RocketVault.balanceOf(string)

• RocketVault.balanceOfToken(string,address)

Page | 57

Rocket Pool Protocol Review Detailed Findings

• RocketDAOProposal.getMessage(uint256)

• RocketDAOProposal.getCreated(uint256)

• RocketDAOProposal.getReceiptSupported(uint256,address)

• RocketDAOProposal.add(address,string,string,uint256,uint256,uint256,uint256,bytes)

• RocketDAOProposal.vote(address,uint256,uint256,bool)

• RocketDAOProposal.execute(uint256)

• RocketDAOProposal.cancel(address,uint256)

• RocketDAOProtocol.bootstrapSettingBool(string,string,bool)

• RocketDAOProtocol.bootstrapSettingAddress(string,string,address)

• RocketDAOProtocol.bootstrapSettingClaimer(string,uint256)

• RocketDAOProtocol.bootstrapSpendTreasury(string,address,uint256)

• RocketDAOProtocol.bootstrapDisable(bool)

• RocketDAOProtocolProposals.proposalSettingUint(string,string,uint256)

• RocketDAOProtocolProposals.proposalSettingBool(string,string,bool)

• RocketDAOProtocolProposals.proposalSettingAddress(string,string,address)

• RocketDAOProtocolProposals.proposalSettingRewardsClaimer(string,uint256)

• RocketDAOProtocolProposals.proposalSpendTreasury(string,address,uint256)

• RocketDAOProtocolSettings.getSettingAddress(string)

• RocketDAOProtocolSettings.setSettingAddress(string,address)

• RocketDAOProtocolSettingsAuction.getCreateLotEnabled()

• RocketDAOProtocolSettingsAuction.getBidOnLotEnabled()

• RocketDAOProtocolSettingsAuction.getLotMinimumEthValue()

• RocketDAOProtocolSettingsAuction.getLotMaximumEthValue()

• RocketDAOProtocolSettingsAuction.getLotDuration()

• RocketDAOProtocolSettingsAuction.getStartingPriceRatio()

• RocketDAOProtocolSettingsAuction.getReservePriceRatio()

• RocketDAOProtocolSettings.getSettingAddress(string)

• RocketDAOProtocolSettings.setSettingAddress(string,address)

• RocketDAOProtocolSettingsMinipool.getDepositNodeAmount(MinipoolDeposit)

Page | 58

Rocket Pool Protocol Review Detailed Findings

• RocketDAOProtocolSettingsMinipool.getDepositUserAmount(MinipoolDeposit)

• RocketDAOProtocolSettingsMinipool.getSubmitWithdrawableEnabled()

• RocketDAOProtocolSettingsMinipool.getLaunchTimeout()

• RocketDAOProtocolSettingsMinipool.getWithdrawalDelay()

• RocketDAOProtocolSettingsRewards.getRewardsClaimerPercBlockUpdated(string)

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.
Consider including Slither or similar static analysis into the regular workflow or CI.

Page | 59

Rocket Pool Protocol Review Detailed Findings

RP-33 Miscellaneous Rocket Pool Contract Issues
Asset rocketpool: contracts/*

Status Open

Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security impli-cations:
• Unbonded validators have a RPL stake minimum that is 10% of 16 ether, not of 32 ether, so the stakingrequirement is effectively halved (even though there is no ETH collateral).

Ensure this is intended.
• It is possible to send ETH directly to the minipool (e.g. via coinbase or selfdestruct) to bypass the typerequirement.

This can be used to stake before user funds have been provided by directly sending an extra 16 eth to aminipool of type "Half deposit". This is because address(this).balance() is used, rather than a statevariable tracking correctly deposited funds.
There were no associated security issues identified, but check that this is acceptable.

• RocketTokenRPL:getInlfationIntervalsPassed() should be corrected to
getInflationIntervalsPassed() (and also in RocketTokenRPLInterface.sol).

• In RocketRewardsPool.getClaimAmount() , there is an unnecessary call to
getContractName(msg.sender) at line [270].
This value is already passed as an argument and is a bug, should contractName != _claimingContracthold.

• RocketClaimNode.getEnabled() should return false if the RocketClaimNode instance is not current i.e.
when getAddress("rocketClaimNode") != address(this) holds.

• The following comments do not correctly match the functions they document.
– At RocketRewardsPool.getRPLBalance() line [58], the comment for @return describes a bool

but it should be a uint256 .
– At RocketRewardsPool.getClaimingContractUserCanClaim() line [163], the NatSpec documen-tation does not match the function.
– At RocketMinipoolDelegate.destroy() line [346], the comment is inconsistent with the imple-

mentation. It describes “send[ing] any remaining ETH to [the] vault”, but it is actually sent to
nodeAddress .

– The comment for RocketDaoNodeTrusted.bootstrapMember() at line [161] states “if there are less
than the required min amount of node members, the owner can add some to bootstrap the DAO”.However, the current code does not enforce anything with regards to a minimum required number ofmembers.
Update the comment, or don’t let the guardian invite using bootstrapMember() when the DAOreaches a certain member count.

Page | 60

Rocket Pool Protocol Review Detailed Findings

• There are inconsistencies in the comment format throughout the contracts, some functions contain infor-mation about the return data, others just have a general comment, for example:
– RocketTokenNETH.sol uses comment style // .
– RocketTokenRETH.sol uses comment style // .
– RocketTokenRPL.sol uses comment style /** */ .
– RocketRewardsPool.sol switches comment style from /** */ and // .

• In RocketMinipoolStatus there are unnecessary external “getter” calls at lines [83,84], costing extra gas:
minipool . getStakingStartBalance () ,

minipool . getStakingEndBalance ()

These values are already held in local variables.
• Revert message gas savings — consider replacing revert messages with comments (where not importantfor external interface) in order to reduce bytecode size and deployment costs.

Some frameworks support “dev revert comments” that can be parsed and used to verify the correct revertwas triggered in tests.9
• In RocketDAONodeTrustedActions , ActionJoin and ActionJoinRequired unnecessarily call

onlyRegisteredNode() twice. This is also called in _memberJoin() .
• Gas saving optimisation in RocketClaimNode.getClaimPossible() — line [39]

rocketNodeStaking . getNodeRPLStake (_nodeAddress) >= rocketNodeStaking .
getNodeMinimumRPLStake (_nodeAddress)

This can be replaced with a single external call to something like
rocketNodeStaking.isMinimumRPLStaked(_nodeAddress) .
In general, when there are multiple calls to the same contract using the same input, this should be straight-forward to replace with a single external call.

• A similar gas saving optimisation in RocketClaimNode.getClaimRewardsPerc() — lines [51-53]
uint256 totalRplStake = rocketNodeStaking . getTotalEffectiveRPLStake ();

if (totalRplStake == 0) { return 0; }
return calcBase .mul(rocketNodeStaking . getNodeEffectiveRPLStake (\ _nodeAddress)).div

(totalRplStake);

This code could be moved to RocketNodeStaking to minimize the number of external function calls.
• Gas saving optimisation for settings contracts — Because settingNameSpace is only defined during con-struction and never modified, there is no need for it to to be kept in a storage slot, costing extra gas toaccess. Instead, declare it as immutable 10

• A typo in the comment at RocketStorage.sol:36 — guiardian should be guardian .
• A typo in the comment at RocketVault:75 — “it’s” should be “its”.
• RocketNetworkPrices uses an internally inconsistent namespace scheme for its storage keys. Some keysstart with “network.price” and others “network.prices”.

9e.g. https://eth-brownie.readthedocs.io/en/stable/tests-pytest-intro.html#developer-revert-comments10See https://docs.soliditylang.org/en/v0.7.6/contracts.html#immutable.

Page | 61

https://eth-brownie.readthedocs.io/en/stable/tests-pytest-intro.html#developer-revert-comments
https://docs.soliditylang.org/en/v0.7.6/contracts.html#immutable

Rocket Pool Protocol Review Detailed Findings

• Spelling mistake _nodeChallengDeciderAddress in ActionChallengeDecided event of
RocketDAONodeTrustedActions.sol .

• RocketDAOProposal.sol:execute() has no access control and can be called by anyone. Not really an
issue, but for consistency it should probably contain the onlyDAOContract modifier.

• Inefficient comparison of variables in RocketDAONodeTrustedUpgrade.sol . typeHash and nameHashcan be compared against compile-time constants, instead of performing the hash each time.
• LotCreated event in RocketAuctionManager.sol uses index as one of its event arguments whereas

other events refer to index as lotIndex .
• Proposals are not able to be voted on if it is the first block of the valid voting period.

RocketDAOProposal.sol:getState() defines ProposalState.Pending as:
block . number <= getStart (_proposalID)

This can be updated to use a < sign instead of a <= sign, allowing DAO members to properly vote onproposals.
• Unused setting of receipt.votes in RocketDAOProposal.sol , taking up unecessary storage.
• Unclear to users that voting against a proposal in RocketDAOProposal.sol has no effect and abstaining

from voting has the same effect. This should be made clear so that users don’t unnecessarily vote againsta proposal and waste gas on a pointless transaction.
• In RocketNetworkPrices.submitPrices() the same storage key prefix is used for 2 different types ofkeys. “network.prices.submitted.node” is used to construct keys containing different parameter sets atlines [[]56,61].

While there is no danger of a collision in this case (as the keys consist of a different number of fixed-widthparameters and no untrusted arguments of dynamic length), this can be unnecessarily confusing and setsan undesirable precedent.
• Potential DAO proposal gas savings: if the proposing account is a member of the relevant DAO, it likelymakes sense for their proposal to count as a vote (to avoid having to make a separate vote transaction).

Perhaps if it is unreasonable to expect that a proposal submission always indicates support, a boolean
voteInFavor parameter could be added to the propose() function.

• It is unnecessary to initialise RocketDaoNodeTrustedSettings.settingNameSpace to ” outside the con-structor, as this is implied.
• In RocketMinipoolDelegate it should be reasonable to reduce storage costs by replacing

userDepositAssigned with userDepositBalance > 0 .
• Inconsistent spelling between MinipoolStatus.Initialized and the storage key “con-

tract.storage.initialised”. (Just nitpicking)
• Some contract names are missing from documentation e.g. “rocketTokenRPL” is not mentioned in

docs/contracts/design.html .
• Inconsistent quotation in solidity code e.g. in RocketRewardsPool ’ is used at lines [62,64] but " isused elsewhere. Similarly in RocketDaoNodeTrustedSettingsMembers .

Consider making use of a solidity code formatter e.g. prettier-plugin-solidity.

Page | 62

https://github.com/prettier-solidity/prettier-plugin-solidity

Rocket Pool Protocol Review Detailed Findings

• Much of the contract code has very long lines e.g. RocketRewardsPool line [83] has 169 characters. Thiscan be difficult to read on some systems or to identify relevant changes when viewing git diff results.
Consider reformatting the contracts (e.g. with a code formatter like prettier-plugin-solidity) to reduce themaximum line length.

• The ABI interface for the Eth2 deposit contract used by Rocket Pool is incomplete or older, and is missingthe supportsInterface() function.
This constitutes no risk, but does mean that the function cannot be used, if desired.

• The Eth2 deposit contract bytecode used in unit testing is not the current bytecode used for the mainnetdeposit contract.
As this bytecode appears to be functionally equivalent (for the purposes of Rocket Pool testing) and isonly used during testing, there is no identified security risk. However, there is some potential for theinconsistent bytecode to allow a unit test to pass that should fail.
Consider updating the casper/compiled/Deposit.bin to match the mainnet contract.

• Slight RocketVault gas savings — etherbalances can be defined instead as
mapping(string => uint256) to avoid an extra keccak operation.

• There is a warning when building the documentation:
rocketpool/docs/smart-node/getting-started.rst:67: WARNING: Unexpected indentation.

Add an empty line after the :: .

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Page | 63

https://github.com/prettier-solidity/prettier-plugin-solidity

Rocket Pool Protocol Review Round Two Findings

Round Two Findings

The following entries describe issues identified within the Rocket Pool platform that were found during thesecond round of this assessment.

RP-34 Inaccurate RPL Inflation When Minting Multiple Intervals At Once
Asset rocketpool: RocketTokenRPL.sol

Status Open

Rating Severity: Medium Impact: High Likelihood: Low

Description

The inflationary RPL token is configured to mint additional tokens equivalent to 5% of its total supply annu-ally (by default). This is implemented in inflationMintTokens() , which can mint additional tokens every
inflationInterval (one day) at an equivalent rate. If inflationMintTokens() was not executed for someperiod, it is designed to mint additional tokens when next executed.
However, these calculations are not quite equivalent. Minting new tokens sporadically results in lower inflationthan if theywereminted every interval. This is illustrated in test_can_get_same_from_multiple_intervals 11
and is explained in more detail below.
This inaccuracy can result in reduced and unpredictable inflationary rewards, which could affect the validity ofeconomic incentive analysis.
As a live RPL token contract cannot be upgraded, the likelihood of this issue having an effect is increased. Though,once identified, could be mitigated by ensuring inflationMintTokens() is executed every interval.

11— See Test Suite and the associated test implementation

Page | 64

Rocket Pool Protocol Review Round Two Findings

Detailed Explanation

The inaccuracy occurs in inflationCalculate() , shown below:
function inflationCalculate () override public view returns (uint256) {126 // The inflation amount

uint256 inflationTokenAmount = 0;128 // Optimisation
uint256 inflationRate = getInflationIntervalRate ();130 // Compute the number of inflation intervals elapsed since the last time we minted infation

tokens
uint256 intervalsSinceLastMint = getInflationIntervalsPassed ();132 // Only update if last interval has passed and inflation rate is > 0
if(intervalsSinceLastMint > 0 && inflationRate > 0) {134 // Our inflation rate

uint256 rate = inflationRate ;136 // Compute inflation for total inflation intervals elapsed
for (uint256 i = 1; i < intervalsSinceLastMint ; i++) {138 rate = rate.mul(inflationRate).div (10 ** 18);
}140 // Get the total supply now
uint256 totalSupplyCurrent = totalSupply ();142 // Return inflation amount
inflationTokenAmount = totalSupplyCurrent .mul(rate).div (10 ** 18).sub(totalSupplyCurrent)

;144 }
// Done146 return inflationTokenAmount ;

}

When more than one interval has elapsed the loop at line [138] executes, intending to mimic the scenario whereminting occurred every interval. This calculation would be equivalent should it occur in a system with arbitrarilyaccurate numbers and lossless division, but not in Solidity where division truncates to the integer.
When the loop executes, the truncating division is performedon the result of rate.mul(inflationRate) which
is smaller than the result of totalSupplyCurrent.mul(rate) (because all values are positive, the inflation is
increasing, and the total supply is much greater than rate).
In other words, the total supply after 2 intervals (minted each interval) is
totalSupplyCurrent .mul(inflationRate).div (10 ** 18).mul(inflationRate).div (10 ** 18)

but when minted in a single call to inflationMintTokens() , this would be
totalSupplyCurrent .mul(

inflationRate .mul(inflationRate).div (10 ** 18)
).div (10 ** 18)

These are not equivalent in general.

Page | 65

Rocket Pool Protocol Review Round Two Findings

Recommendations

Modify inflationCalculate() so that minting sporadically is equivalent to minting every interval.
One solution could involve something like
uint256 inflationRate = getInflationIntervalRate ();
// Get the total supply now
uint256 totalSupplyCurrent = totalSupply ();
uint256 newTotalSupply = totalSupplyCurrent ;
// Compute inflation for total inflation intervals elapsed
for (uint256 i = 0; i < intervalsSinceLastMint ; i++) {

newTotalSupply = newTotalSupply .mul(inflationRate).div (10 ** 18);
}
// Return inflation amount
inflationTokenAmount = newTotalSupply .sub(totalSupplyCurrent);

Implement relevant tests to cover the scenario.

Page | 66

Rocket Pool Protocol Review Round Two Findings

RP-35 Unexpected Behaviour If RPL Inflation Rate Set to Zero
Asset rocketpool: RocketTokenRPL.sol

Status Open

Rating Severity: Low Impact: Medium Likelihood: Low

Description

The protocol DAO can configure the RPL inflation rate (which is initially set to the equivalent of 5% p.a. calculateddaily). Should the inflation rate be set to zero for a period then back to some non-zero value, the behaviour ofthe minting calculations may be unexpected and undesirable.
While no tokens are minted when the inflation rate (getInflationIntervalRate()) is set to
zero, the inflationCalcTime state variable is not updated so the contract acts equivalently to if
inflationMintTokens() were never executed.
Consider the scenario where the inflation rate is set to zero for some period (of multiple one day intervals) P ,and later set to a non-zero value at some time Tr>0. Intuitively, when executing inflationMintTokens() twointervals after Tr>0, we would expect to only mint tokens for those two intervals. Instead, tokens will be mintedas if the rate had been non-zero for P + 2 intervals.
inflationCalcTime is only updated at line [164], after a requirement that number of tokens to mint is greaterthan zero.

Recommendations

Confirm whether the current behaviour is undesirable. If so, consider implementing a way to update the
inflationCalcTime value when inflation intervals have passed while the inflation rate was set to zero.

Page | 67

Rocket Pool Protocol Review Round Two Findings

RP-36 Node Operator Can Refuse to Distribute Minipool Funds
Asset rocketpool: RocketMinipoolDelegate.sol

Status Open

Rating Severity: Low Impact: Low Likelihood: Low

Description

With recent changes to the Rocket Pool withdrawal process, a minipool’s associated node operator is the onlyentity allowed to successfully execute payout() . This function is responsible for distributing the validator’s
funds to the node operator and the protocol (for use by rETH holders). If the node operator refuses to executethis function, these funds are effectively “locked” inside the minipool contract.
The likelihood of this being effectively abused is low. Because bondedminipools also usually contain a substantialamount of funds intended for the node operator, the operator has direct economic incentives to execute thefunction. This incentive can break down when the operator has “nothing to lose”, like in the following, extremecases:

• The Node Operator was grossly negligent or malicious such that the final balance was less than the
userDepositBalance (less than 16 ETH for bonded minipools), so would receive no reward for callingpayout.

• The minipool was unbonded so that the operator similarly has no funds locked in the minipool that wouldbe released by payout() .
As this could be reasonable grounds for “kicking” the operator from their Trusted Node DAO membershipand slash their bond, this would be more relevant if the operator had already been kicked.

As any locked funds can be recovered via later RocketMinipoolDelegate contract updates, the operator cannothold these funds hostage indefinitely and the impact is deemed low.

Recommendations

The testing team acknowledges the valid reason why access to payout() is restricted — to limit impact in the
improbable event that the Trusted DAO incorrectly sets the minipool status to Withdrawable before the fundsare delivered to the contract.
Consider allowing others to call the payout() in relevant circumstances. For example, when the minipool is
unbonded or the stakingEndBalance is near or less than the userDepositBalance .
See also RP-37.
Mitigations could also involve the following:

• The “others” are still restricted e.g. to members of the Trusted DAO.
• Allow any Trusted DAO member to call payout() for unbonded minipools, so operators kicked from theDAO cannot misbehave.

Page | 68

Rocket Pool Protocol Review Round Two Findings

• The “others” can only call an alternative version of payout() , which doesn’t destroy() the minipool.
This is probably not beneficial unless it were also possible to process withdrawals more than once.

It may also be worth considering preventing withdrawal of staked RPL until the payout function has beenexecuted for the associated minipool. As this would likely require additional book-keeping, the gas fees may beprohibitive (to stop counting the minipool as active for the purposes of receiving RPL rewards, but still activewith regards to preventing withdrawal).

Page | 69

Rocket Pool Protocol Review Round Two Findings

RP-37 Node Operator Can Revert processWithdrawal()
Asset rocketpool: RocketNetworkWithdrawal.sol

Status Open

Rating Severity: Low Impact: Low Likelihood: Low

Description

This is related to RP-36. If RocketMinipoolDelegate.payout() were adjusted to allow accountsother than the node operator to call it, the operator could still make execution fail by reverting
RocketNetworkWithdrawal.processWithdrawal() .
If the node is entitled to some of the validator balance, this is transferred to the node’s withdrawal address viaa low level call and must be successful (at line [60]).
// Transfer node ETH balance to node operator
if (nodeAmount > 0) {

// Transfer ETH now
(bool success ,) = _nodeWithdrawalAddress . call { value : nodeAmount }("");
require (success , "Node ETH balance was not successfully transferred to node withdrawal

address ");
}

The node operator can change thewithdrawal address to a contractwhose receive() or fallback() functionis set to revert or consume all available gas, thus causing the transaction to fail.

Recommendations

If changing RocketMinipoolDelegate.payout() to allow execution by entities other than the node operator,ensure that the node operator cannot block execution by setting a malicious withdrawal address.
Mitigations could include:

• The alternative, exposed payout() does not deliver funds to the operator or destroy the minipool, onlyprocessing the user balance.
The node operator would still need to call payout() to receive any allocated funds and destroy the con-tract.

• Instead of transferring the node funds to the withdrawal address via RocketNetworkWithdrawal , those
funds are left in the minipool contract — to be delivered via selfdestruct() , which cannot fail.
This has some drawbacks in requiring some refactoring of the RocketNetworkWithdrawal interface andlimiting any processing logic possible in the node’s withdrawal destination.

Page | 70

Rocket Pool Protocol Review Round Two Findings

RP-38 Unhandled Errors — Round Two
Asset rocketpool-go & smartnode

Status Open

Rating Informational

Description

A range of errors in go are not handled correctly. These errors have been deemed as informational, as no exploitover these errors could be identified.
Related code in rocketpool-go :
// rocketpool-go/rocketpool/abi.go:28

27: }
> 28: defer zlibReader.Close()

29:

// rocketpool-go/rocketpool/abi.go:48
47: zlibWriter := zlib.NewWriter(&abiCompressed)

> 48: defer zlibWriter.Close()
49: if _, err := zlibWriter.Write([]byte(abiStr)); err != nil {

Related code smartnode

// smartnode/rocketpool-cli/node/utils.go:36
35: if resp, err := http.Get(FreeGeoIPURL); err == nil {

> 36: defer resp.Body.Close()
37: if body, err := ioutil.ReadAll(resp.Body); err == nil {

// smartnode/rocketpool-cli/wallet/init.go:65
64: // Clear terminal output

> 65: term.Clear()
66:

// smartnode/rocketpool-pow-proxy/proxy/http-proxy.go:62
61: log.Println(errors.New("Request Content-Type header not specified"))

> 62: fmt.Fprintln(w, errors.New("Request Content-Type header not specified"))
63: return

// smartnode/rocketpool-pow-proxy/proxy/http-proxy.go:70
69: log.Println(fmt.Errorf("Error forwarding request to remote server: %w", err))

> 70: fmt.Fprintln(w, fmt.Errorf("Error forwarding request to remote server: %w", err))
71: return

// smartnode/rocketpool-pow-proxy/proxy/http-proxy.go:73
72: }

> 73: defer response.Body.Close()
74:

Page | 71

Rocket Pool Protocol Review Round Two Findings

// smartnode/rocketpool-pow-proxy/proxy/http-proxy.go:82
81: log.Println(fmt.Errorf("Error reading response from remote server: %w", err))

> 82: fmt.Fprintln(w, fmt.Errorf("Error reading response from remote server: %w", err))
83: return

// smartnode/rocketpool-pow-proxy/proxy/ws-proxy.go:62
61: log.Println(fmt.Errorf("Error upgrading websocket: %w", err))

> 62: fmt.Fprintln(w, fmt.Errorf("Error upgrading websocket: %w", err))
63: return

// smartnode/rocketpool-pow-proxy/proxy/ws-proxy.go:65
64: }

> 65: defer eth2Connection.Close()
66:

// smartnode/rocketpool-pow-proxy/proxy/ws-proxy.go:71
70: log.Println(fmt.Errorf("Error connecting to remote websocket: %w", err))

> 71: fmt.Fprintln(w, fmt.Errorf("Error connecting to remote websocket: %w", err))
72: }

// smartnode/rocketpool-pow-proxy/proxy/ws-proxy.go:73
72: }

> 73: defer infuraConnection.Close()
74:

// smartnode/rocketpool-pow-proxy/proxy/ws-proxy.go:86
85: log.Println(fmt.Errorf("Error reading from eth2: %w", err))

> 86: fmt.Fprintln(w, fmt.Errorf("Error reading from eth2: %w", err))
87: break

// smartnode/rocketpool-pow-proxy/proxy/ws-proxy.go:93
92: log.Println(fmt.Errorf("Error writing to remote websocket: %w", err))

> 93: fmt.Fprintln(w, fmt.Errorf("Error writing to remote websocket: %w", err))
94: break

// smartnode/rocketpool-pow-proxy/proxy/ws-proxy.go:108
107: log.Println(fmt.Errorf("Error reading from remote websocket: %w", err))

> 108: fmt.Fprintln(w, fmt.Errorf("Error reading from remote websocket: %w", err))
109: break

// smartnode/rocketpool-pow-proxy/proxy/ws-proxy.go:115
114: log.Println(fmt.Errorf("Error writing to eth2: %w", err))

> 115: fmt.Fprintln(w, fmt.Errorf("Error writing to eth2: %w", err))
116: break

// smartnode/rocketpool-pow-proxy/rocketpool-pow-proxy.go:83
82: proxyServer := proxy.NewHttpProxyServer(c.GlobalString("httpPort"), c.GlobalString("httpProviderUrl"),

c.GlobalString("network"), c.GlobalString("projectId"))
> 83: proxyServer.Start()

84: wg.Done()

Page | 72

Rocket Pool Protocol Review Round Two Findings

// smartnode/rocketpool-pow-proxy/rocketpool-pow-proxy.go:90
89: proxyServer := proxy.NewWsProxyServer(c.GlobalString("wsPort"), c.GlobalString("wsProviderUrl"), c.

GlobalString("network"), c.GlobalString("projectId"))
> 90: proxyServer.Start()

91: wg.Done()

// smartnode/shared/services/beacon/lighthouse/client.go:476
475: }

> 476: defer response.Body.Close()
477:

// smartnode/shared/services/beacon/lighthouse/client.go:505
504: }

> 505: defer response.Body.Close()
506:

// smartnode/shared/services/beacon/prysm/client.go:52
51: func (c *Client) Close() {

> 52: c.conn.Close()
53: }

// smartnode/shared/services/beacon/teku/client.go:480
479: }

> 480: defer response.Body.Close()
481:

// smartnode/shared/services/beacon/teku/client.go:508
507: }

> 508: defer response.Body.Close()
509:

// smartnode/shared/services/rocketpool/client.go:146
145: if c.client != nil {

> 146: c.client.Close()
147: }

// smartnode/shared/services/rocketpool/client.go:199
198: if err != nil { return err }

> 199: defer cmd.Close()
200:

// smartnode/shared/services/rocketpool/client.go:223
222: if verbose {

> 223: c.Println(scanner.Text())
224: }

// smartnode/shared/services/rocketpool/client.go:517
516: if err != nil { return err }

> 517: defer cmd.Close()
518:

Page | 73

Rocket Pool Protocol Review Round Two Findings

// smartnode/shared/services/rocketpool/client.go:524
523: if err != nil { return err }

> 524: go io.Copy(os.Stdout, cmdOut)
525: go io.Copy(os.Stderr, cmdErr)

// smartnode/shared/services/rocketpool/client.go:525
524: go io.Copy(os.Stdout, cmdOut)

> 525: go io.Copy(os.Stderr, cmdErr)
526:

// smartnode/shared/services/rocketpool/client.go:541
540: }

> 541: defer cmd.Close()
542:

Recommendations

Consider propagating or handling the errors for each of these cases.
Consider integrating errcheck and other security linters into the CI workflow.
Additionally, avoid using the defer keyword to close writable files as the Close() method returns an error
value. Although a common idiom, by using the defer keyword, the returned error value is being ignored. While
uncommon, an error returned by Close() could indicate a problem with the filesystem and the writes were notsuccessfully flushed to disk.

Page | 74

https://github.com/kisielk/errcheck

Rocket Pool Protocol Review Round Two Findings

RP-39 Frequent RPL Reward Claim Requirement Unevenly Impacts Small Node Operators
Asset rocketpool: RocketClaimNode.sol

Status Open

Rating Informational

Description

Rocket Pool defines 14 days as the default period at which staking participants are required too claim any feesgenerated through RPL rewards. This RPL acts as insurance against poor node operator performance and simul-taneously protects user’s deposits. The rewarded RPL is determined by a node operator’s share of the entirestaked pool of RPL.
For a node operator who only runs one minipool and stakes the minimum required RPL (10%), it’s possible thatthe gas fees required to claim RPL every two weeks could significantly limit their profitability in comparison toa node operator who runs several Rocket Pool minipools. This could be mitigated by tracking the profitabilityof a node operator from when it begins staking and when it decides to claim RPL after withdrawing their ETH.Without reducing the number of times a node operator is required to claim RPL to some fixed amount, the RocketPool system is potentially threatened by more centralized node operators who are able to afford these costs.

Recommendations

The testing team recommends Rocket Pool re-implements the distribution of inflation rewards to each of theclaiming contracts using an indexation mechanism. Each claiming contract will then have an index which tracksthe total reward amounts, updated at the start of each claiming period. The index of each node operator willbe tracked upon entering and exiting the RPL staking system. Changes to the distribution of inflation as in
RocketDaoProtocolSettingsRewards , should not affect any indexation calculations.
There are a few drawbacks to the proposed implementation:

• Increased gas costs when minting RPL. Upon each inflation period, the index value of each registeredclaiming contract will need to be updated.
• Additional claimers would increase the amount of gas required to iterate through the loop. This can bemitigated by limiting the maximum number of registered claiming contracts allowed.
• Added contract complexity due to the implementation of performing index calculations and updates.
• Increased gas costs for the end user when staking, withdrawing and updating their stake.
• It may be infeasible to track consequences when a node operator occasionally goes above 150% or below10% per minipool.

However, despite these drawbacks, indexation provides increased flexibility to smaller node operators in a waythat improves overall user experience. It’s important to note that if the current implementation is left untouched,that node operators understand and accept the running costs of claiming RPL every two weeks.
An alternative mitigation could include weighting the distribution of RPL inflation rewards more heavily to smallstakers, to counteract the proportionally larger gas fees.

Page | 75

Rocket Pool Protocol Review Round Two Findings

RP-40 Inconsistent User Deposit Gas Estimation
Asset rocketpool: RocketDepositPool.sol

Status Open

Rating Informational

Description

The amount of gas consumed by the user–facing RocketDepositPool.deposit() function can fluctuate rea-sonably significantly, potentially causing problems for UIs trying to estimate a reasonable maximum gas limit.
The gas consumed depends depends on the RocketDepositPool s ETH balance when the
deposit() transaction is mined. As an example, a deposit for 1 ETH would not execute
RocketMinipoolDelegate.userDeposit() when the deposit pool has a balance of 13 ETH (not enough
to fund any minipool), but would execute it twice when the pool has a balance of 100 ETH.12 This balance canvary widely within a single block based on deposit ordering, burnt rETH, and processed validator withdrawals.
If a user’s UI (web UI or wallet) relies on the eth_estimateGas JSONRPC call to suggest a maximum gas limitfor their transaction it may return a value assuming no deposit assignments occur but, when the transaction ismined, it must perform these assignments. Thus the transaction fails to execute due to an insufficient gas.
This has no identified security impact, but could be a UI “pain point”.

Recommendations

Have the UI set or recommend a default gasLimit that is sufficient to execute
rocketDAOProtocolSettingsDeposit.getMaximumDepositAssignments() deposit assignments.
This could involve:

• RocketDepositPool.deposit() containing a require(gas >= minRecommendedGas) statement.
This would ensure eth_estimateGas() returns a suitable value to appease this, but unnecessarily sets ahard requirement in the contract which could be troublesome to maintain.

• Have the official UI specify a gasLimit that does not use eth_estimateGas() alone to spontaneouslycalculate the value, instead returning a value sufficient to execute the maximum possible number of de-posits giventhe current settings.
The primary complications involved are likely associated with updating any estimate when protocol settings orcontract code changes.
Consider also documenting this (and a suitable gasLimit) in relevant user documentation, to help users who wantto submit funds directly from their wallet application. It might be helpful to maintain a test network that mirrorsthe contract code and settings of mainnet.

12Assuming deposit assignment is enabled (RocketDAOProtocolSettingsDeposit.getAssignDepositsEnabled()) and other settings
remain their default values.

Page | 76

Rocket Pool Protocol Review Round Two Findings

RP-41 Miscellaneous Rocket Pool Contract Issues — Round Two
Asset rocketpool: contracts/*

Status Open

Rating Informational

Description

This section details miscellaneous findings discovered by the testing team in the subsequent round of testingthat do not have direct security implications:
• The contract compilation process does not include an optimisation step. That is, the project’s

truffle-config.js does not contain optimizer: { enabled: true } .
These various optimisations can improve gas efficiency and reduce bytecode size.

• The nETH token was removed, but several references remain in the documentation and supporting files.Specifically, in the following files:
– docs/rocket-pool/reward-tokens.rst

– docs/rocket-pool/minipools.rst

– docs/rocket-pool/staking.rst

– docs/rocket-pool/nodes.rst

– docs/js-library/tokens.rst

– docs/js-library/getting-started.rst

– docs/js-library/settings.rst

– docs/contracts/design.rst

– docs/smart-node/minipools.rst

– docs/smart-node/node-setup.rst

– test/_helpers/tokens.js

– test/minipool/scenario-close.js

– test/minipool/scenario-withdraw.js

• Gas saving optimisation in rocketMinipoolQueue.removeMinipool() — An external contract call can be
avoided (at line [126]) by taking the deposit type as a function parameter.
Because removeMinipool() can only be called by a registered minipool, this requires no additional trustassumption.

• Gas saving optimisation in RocketMinipoolDelegate.setWithdrawable() — lines [178-179] (shown be-
low)
RocketMinipoolQueueInterface rocketMinipoolQueue = RocketMinipoolQueueInterface (

getContractAddress (" rocketMinipoolQueue "));
if (! userDepositAssigned) { rocketMinipoolQueue . removeMinipool (); }

Page | 77

Rocket Pool Protocol Review Round Two Findings

can be rewritten as
if (! userDepositAssigned) {

RocketMinipoolQueueInterface rocketMinipoolQueue = RocketMinipoolQueueInterface (
getContractAddress (" rocketMinipoolQueue "));

rocketMinipoolQueue . removeMinipool ();
}

to avoid an extra external call in the majority of cases.
This is a minor improvement, as is executed comparatively infrequently.

• The comment RocketTokenRPL.sol:30 is inaccurate — “Last block inflation was calculated at” should bemodified to something like “Timestamp of last block inflation was calculated at” since the timestamp is nowtracked instead of the block number.
• Slight typo at RocketTokenRPL.sol:130 — “infation” should be “inflation”.
• RocketDepositPool.assignDeposits() could be refactored in a more gas efficient manner to only make

a single call to getBalance() and rocketVault.withdrawEther() (by tracking balance changes in the
local contract and using two loops).

• RocketDepositPool.assignDeposits() could reduce the number of external
getContractAddress("rocketVault") function calls, by calling a private version of getBalance()

that accepts the RocketVaultInterface as a parameter.
• PR #201 introduces some additional checks (in _beforeTokenTransfer()) before performing rETH trans-fers or burns. Some gas could be saved by reducing the number of calls to external contracts.

By directly calling getUintS("dao.protocol.setting.networknetwork.reth.deposit.delay") , we
can avoid an external call to storage for getContractAddress("rocketDAOProtocolSettingsNetwork")and one of the external calls involved with executing
rocketDAOProtocolSettingsNetwork.getRethDepositDelay() .
Although this has some limits on upgradability (the value can change but not the storage key), this wouldalready be restricted to never changing the getRethDepositDelay() function signature.

• Like in RP-31 the testing team recommends that the storage key prefix "user.deposit.block" (defined
in PR #201) were instead delimited like "user.deposit.block." or "user.deposit.block!"

• Given that PR #201 prevents users from withdrawing or transferring their rETH for some period after anydeposit, ensure user documentation clearly explains and describes this behaviour.
This should also, optimally, have a relevant notice or warning in the official UI.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Page | 78

https://github.com/rocket-pool/rocketpool/pull/201/commits/c1b208c7dd6783ebf996ff46a96f892d5948ae8d
https://github.com/rocket-pool/rocketpool/pull/201/commits/c1b208c7dd6783ebf996ff46a96f892d5948ae8d
https://github.com/rocket-pool/rocketpool/pull/201/commits/c1b208c7dd6783ebf996ff46a96f892d5948ae8d

Rocket Pool Protocol Review Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are provided alongside thisdocument. The brownie framework was used to perform these tests and the output is given below.

Brownie v1 .14.3 - Python development framework for Ethereum

============================= test session starts ===========================

test_RPL .py: test_rpl_deploy_vars PASSED [0%]
test_RPL .py: test_daosettings_match_views PASSED [1%]
test_RPL .py: test_inflation_calculate_changes PASSED [2%]
test_RPL .py: test_invalid_change_with_inflation XFAIL [2%]
test_RPL .py: test_inflation_no_mint_tokens_before_interval PASSED [3%]
test_RPL .py: test_inflation_can_mint_after_default_interval PASSED [4%]
test_RPL .py: test_inflation_can_mint_after_set_interval PASSED [4%]
test_RPL .py: test_cannot_mint_after_minting_in_same_interval PASSED [5%]
test_RPL .py: test_cannot_swap_tokens_if_not_assigned PASSED [6%]
test_RPL .py: test_cannot_mint_without_allowance PASSED [7%]
test_RPL .py: test_cannot_swap_more_than_allowance PASSED [7%]
test_RPL .py: test_can_swap_tokens_balance PASSED [8%]
test_RPL .py: test_can_swap_tokens_in_multiple_calls PASSED [9%]
test_RPL .py: test_cannot_swap_greater_than_balance PASSED [9%]
test_RPL .py: test_can_swap_during_after_inflation PASSED [10%]
test_RPL .py: test_can_get_same_from_two_intervals XFAIL [11%]
test_RPL .py: test_can_get_same_from_multiple_intervals XFAIL [12%]
test_auction .py: test_auction_settings PASSED [12%]
test_auction .py: test_create_lot_insufficient_balance PASSED [13%]
test_auction .py: test_create_lot_disabled PASSED [14%]
test_auction .py: test_create_lot PASSED [14%]
test_auction .py: test_place_bid_zero_value PASSED [15%]
test_auction .py: test_place_bid_nonexistent_lot PASSED [16%]
test_auction .py: test_place_bid_bidding_disabled PASSED [17%]
test_auction .py: test_place_bid_lot_expired PASSED [17%]
test_auction .py: test_place_bid_allocation_exhausted PASSED [18%]
test_auction .py: test_place_bid_refund_excess PASSED [19%]
test_auction .py: test_place_bid PASSED [19%]
test_auction .py: test_claim_bid_nonexistent_lot PASSED [20%]
test_auction .py: test_claim_bid_no_claim PASSED [21%]
test_auction .py: test_claim_bid PASSED [21%]
test_auction .py: test_bid_rounding XFAIL [22%]
test_auction .py: test_recover_unclaimed_bidding_not_concluded PASSED [23%]
test_auction .py: test_recover_unclaimed_no_rpl PASSED [24%]
test_auction .py: test_recover_unclaimed PASSED [24%]
test_auction .py: test_full_auction PASSED [25%]
test_dao_protocol .py: test_guardian_bootstrap_settings PASSED [26%]
test_dao_protocol .py: test_non_guardian_bootstrap_settings PASSED [26%]
test_dao_protocol .py: test_guardian_disable_bootstrap_mode PASSED [27%]
test_dao_protocol .py: test_guardian_change_setting_bootstrap_disabled PASSED [28%]
test_deploy .py: test_registered_instance_registration [rocketVault] PASSED [29%]
test_deploy .py: test_registered_instance_registration [rocketAuctionManager] PASSED [29%]
test_deploy .py: test_registered_instance_registration [rocketDepositPool] PASSED [30%]
test_deploy .py: test_registered_instance_registration [rocketMinipoolDelegate] PASSED [31%]
test_deploy .py: test_registered_instance_registration [rocketMinipoolFactory] PASSED [31%]
test_deploy .py: test_registered_instance_registration [rocketMinipoolManager] PASSED [32%]
test_deploy .py: test_registered_instance_registration [rocketMinipoolQueue] PASSED [33%]
test_deploy .py: test_registered_instance_registration [rocketMinipoolStatus] PASSED [34%]
test_deploy .py: test_registered_instance_registration [rocketNetworkBalances] PASSED [34%]
test_deploy .py: test_registered_instance_registration [rocketNetworkFees] PASSED [35%]
test_deploy .py: test_registered_instance_registration [rocketNetworkPrices] PASSED [36%]
test_deploy .py: test_registered_instance_registration [rocketNetworkWithdrawal] PASSED [36%]
test_deploy .py: test_registered_instance_registration [rocketRewardsPool] PASSED [37%]
test_deploy .py: test_registered_instance_registration [rocketClaimDAO] PASSED [38%]
test_deploy .py: test_registered_instance_registration [rocketClaimNode] PASSED [39%]
test_deploy .py: test_registered_instance_registration [rocketClaimTrustedNode] PASSED [39%]
test_deploy .py: test_registered_instance_registration [rocketNodeDeposit] PASSED [40%]

Page | 79

Rocket Pool Protocol Review Test Suite

test_deploy .py: test_registered_instance_registration [rocketNodeManager] PASSED [41%]
test_deploy .py: test_registered_instance_registration [rocketNodeStaking] PASSED [41%]
test_deploy .py: test_registered_instance_registration [rocketDAOProposal] PASSED [42%]
test_deploy .py: test_registered_instance_registration [rocketDAONodeTrusted] PASSED [43%]
test_deploy .py: test_registered_instance_registration PASSED [43%]

[rocketDAONodeTrustedProposals]
test_deploy .py: test_registered_instance_registration PASSED [44%]

[rocketDAONodeTrustedActions]
test_deploy .py: test_registered_instance_registration PASSED [45%]

[rocketDAONodeTrustedUpgrade]
test_deploy .py: test_registered_instance_registration PASSED [46%]

[rocketDAONodeTrustedSettingsMembers]
test_deploy .py: test_registered_instance_registration PASSED [46%]

[rocketDAONodeTrustedSettingsProposals]
test_deploy .py: test_registered_instance_registration [rocketDAOProtocol] PASSED [47%]
test_deploy .py: test_registered_instance_registration PASSED [48%]

[rocketDAOProtocolProposals]
test_deploy .py: test_registered_instance_registration PASSED [48%]

[rocketDAOProtocolActions]
test_deploy .py: test_registered_instance_registration PASSED [49%]

[rocketDAOProtocolSettingsInflation]
test_deploy .py: test_registered_instance_registration PASSED [50%]

[rocketDAOProtocolSettingsRewards]
test_deploy .py: test_registered_instance_registration PASSED [51%]

[rocketDAOProtocolSettingsAuction]
test_deploy .py: test_registered_instance_registration PASSED [51%]

[rocketDAOProtocolSettingsNode]
test_deploy .py: test_registered_instance_registration PASSED [52%]

[rocketDAOProtocolSettingsNetwork]
test_deploy .py: test_registered_instance_registration PASSED [53%]

[rocketDAOProtocolSettingsDeposit]
test_deploy .py: test_registered_instance_registration PASSED [53%]

[rocketDAOProtocolSettingsMinipool]
test_deploy .py: test_registered_instance_registration PASSED [54%]

[rocketTokenRPLFixedSupply]
test_deploy .py: test_registered_instance_registration [rocketTokenRETH] PASSED [55%]
test_deploy .py: test_registered_instance_registration [rocketTokenNETH] PASSED [56%]
test_deploy .py: test_registered_instance_registration [rocketTokenRPL] PASSED [56%]
test_deploy .py: test_registered_instance_registration [addressQueueStorage] PASSED [57%]
test_deploy .py: test_registered_instance_registration [addressSetStorage] PASSED [58%]
test_deploy .py: test_registered_instance_registration [casperDeposit] PASSED [58%]
test_deploy .py: test_registered_abi_only PASSED [59%]
test_deploy .py: test_storage_should_be_initialised PASSED [60%]
test_deploy .py: test_owner_should_not_be_registered_as_a_contract PASSED [60%]
test_minipool_reward .py: test_get_minipool_reward_positive [0] PASSED [61%]
test_minipool_reward .py: test_get_minipool_reward_positive [16 ether] PASSED [62%]
test_minipool_reward .py: test_get_minipool_reward_positive [32 ether] PASSED [63%]
test_minipool_reward .py: test_get_minipool_reward_negative [0] PASSED [63%]
test_minipool_reward .py: test_get_minipool_reward_negative [16 ether] PASSED [64%]
test_minipool_reward .py: test_get_minipool_reward_negative [32 ether] PASSED [65%]
test_nETH .py: test_simple_deploy_vars PASSED [65%]
test_nETH .py: test_zero_address_constructor PASSED [66%]
test_nETH .py: test_only_network_can_deposit PASSED [67%]
test_nETH .py: test_deposit_reward_respects_updates PASSED [68%]
test_nETH .py: test_only_minipool_can_mint PASSED [68%]
test_nETH .py: test_can_correctly_burn PASSED [69%]
test_nETH .py: test_cannot_burn_zero_balance PASSED [70%]
test_nETH .py: test_cannot_burn_zero_eth_contract PASSED [70%]
test_nETH .py: test_cannot_burn_more_than_eth PASSED [71%]
test_node .py: test_cannot_create_minipool_without_rpl_stake PASSED [72%]
test_node .py: test_can_create_minipool_when_staking_rpl PASSED [73%]

[MinipoolDepositCls .FULL]
test_node .py: test_can_create_minipool_when_staking_rpl PASSED [73%]

[MinipoolDepositCls .HALF]
test_node .py: test_normal_node_cannot_create_unbonded_minipool PASSED [74%]
test_node .py: test_trusted_node_cannot_create_without_staked_rpl PASSED [75%]

[MinipoolDepositCls .FULL]
test_node .py: test_trusted_can_create_minipool_with_any_deposit_amount PASSED [75%]

[MinipoolDepositCls .FULL]
test_node .py: test_trusted_node_cannot_create_without_staked_rpl PASSED [76%]

Page | 80

Rocket Pool Protocol Review Test Suite

[MinipoolDepositCls .HALF]
test_node .py: test_trusted_can_create_minipool_with_any_deposit_amount PASSED [77%]

[MinipoolDepositCls .HALF]
test_node .py: test_trusted_node_cannot_create_without_staked_rpl PASSED [78%]

[MinipoolDepositCls . EMPTY]
test_node .py: test_trusted_can_create_minipool_with_any_deposit_amount PASSED [78%]

[MinipoolDepositCls . EMPTY]
test_node .py: test_trusted_needs_more_rpl_to_create_unbonded_minipool XFAIL [79%]
test_rETH .py: test_rETH_deployment_params PASSED [80%]
test_rETH .py: test_rETH_zero_storage PASSED [80%]
test_rETH .py: test_only_network_can_deposit PASSED [81%]
test_rETH .py: test_deposit_reward_respects_updates PASSED [82%]
test_rETH .py: test_can_get_correct_eth_value_at_start PASSED [82%]
test_storage .py: test_can_retrieve_some_stored_uint PASSED [83%]
test_storage .py: test_can_retrieve_some_stored_string PASSED [84%]
test_storage .py: test_can_retrieve_some_stored_address PASSED [85%]
test_storage .py: test_can_retrieve_some_stored_bytes PASSED [85%]
test_storage .py: test_can_retrieve_some_stored_bool PASSED [86%]
test_storage .py: test_can_retrieve_some_stored_int PASSED [87%]
test_storage .py: test_can_retrieve_some_stored_bytes32 PASSED [87%]
test_storage .py: test_different_types_are_independent PASSED [88%]
test_storage .py: test_locking PASSED [89%]
test_trusted_dao .py: test_create_proposal_and_execute PASSED [90%]
test_trusted_dao .py: test_execute_proposal_empty_calldata PASSED [90%]
test_trusted_dao .py: test_cancel_proposal PASSED [91%]
test_trusted_dao .py: test_execute_proposal_direct XFAIL [92%]
test_trusted_dao .py: test_action_join_no_invite PASSED [92%]
test_trusted_dao .py: test_action_join_required PASSED [93%]
test_trusted_dao .py: test_proposal_leave PASSED [94%]
test_trusted_dao .py: test_proposal_replace XFAIL [95%]
test_trusted_dao .py: test_proposal_kick PASSED [95%]
test_trusted_dao .py: test_challenge_node PASSED [96%]
test_trusted_dao .py: test_upgrade_rpl_token_contract_with_empty_abi XFAIL [97%]
test_trusted_dao .py: test_upgrade_abi_with_existing_abi XFAIL [97%]
test_trusted_dao_reporting .py: test_correct_withdrawal PASSED [98%]
test_trusted_dao_reporting .py: test_malicious_withdrawal_reporting [True] XFAIL [99%]
test_trusted_dao_reporting .py: test_malicious_withdrawal_reporting [False] XFAIL [100%]

============================ Hypothesis Statistics ==========================

test_minipool_reward .py: test_get_minipool_reward_positive [0]:

- during reuse phase (0.04 seconds):
- Typical runtimes : ~ 15ms , ~ 2% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (10.28 seconds):
- Typical runtimes : 0 -216 ms , ~ 23% in data generation
- 49 passing examples , 0 failing examples , 17 invalid examples

- Stopped because settings . max_examples =50

test_minipool_reward .py: test_get_minipool_reward_positive [16 ether]:

- during reuse phase (0.24 seconds):
- Typical runtimes : ~ 217ms , ~ 0% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (10.31 seconds):
- Typical runtimes : 0 -215 ms , ~ 23% in data generation
- 49 passing examples , 0 failing examples , 17 invalid examples

- Stopped because settings . max_examples =50

test_minipool_reward .py: test_get_minipool_reward_positive [32 ether]:

- during reuse phase (0.25 seconds):
- Typical runtimes : ~ 222ms , ~ 0% in data generation

Page | 81

Rocket Pool Protocol Review Test Suite

- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (10.22 seconds):
- Typical runtimes : 0 -215 ms , ~ 25% in data generation
- 49 passing examples , 0 failing examples , 18 invalid examples

- Stopped because settings . max_examples =50

test_minipool_reward .py: test_get_minipool_reward_negative [0]:

- during reuse phase (0.25 seconds):
- Typical runtimes : ~ 223ms , ~ 1% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (10.40 seconds):
- Typical runtimes : 0 -229 ms , ~ 23% in data generation
- 49 passing examples , 0 failing examples , 17 invalid examples

- Stopped because settings . max_examples =50

test_minipool_reward .py: test_get_minipool_reward_negative [16 ether]:

- during reuse phase (0.32 seconds):
- Typical runtimes : ~ 248ms , ~ 0% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (10.33 seconds):
- Typical runtimes : 0 -218 ms , ~ 24% in data generation
- 49 passing examples , 0 failing examples , 17 invalid examples

- Stopped because settings . max_examples =50

test_minipool_reward .py: test_get_minipool_reward_negative [32 ether]:

- during reuse phase (0.23 seconds):
- Typical runtimes : ~ 206ms , ~ 0% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (10.20 seconds):
- Typical runtimes : 0 -215 ms , ~ 24% in data generation
- 49 passing examples , 0 failing examples , 17 invalid examples

- Stopped because settings . max_examples =50

test_storage .py: test_can_retrieve_some_stored_uint :

- during reuse phase (0.06 seconds):
- Typical runtimes : ~ 57ms , ~ 0% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (2.36 seconds):
- Typical runtimes : 258 -266 ms , ~ 0% in data generation
- 9 passing examples , 0 failing examples , 0 invalid examples

- Stopped because settings . max_examples =10

test_storage .py: test_can_retrieve_some_stored_string :

- during reuse phase (0.38 seconds):
- Typical runtimes : 109 -266 ms , ~ 0% in data generation
- 2 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (2.14 seconds):
- Typical runtimes : 0 -286 ms , ~ 32% in data generation
- 8 passing examples , 0 failing examples , 4 invalid examples

Page | 82

Rocket Pool Protocol Review Test Suite

- Stopped because settings . max_examples =10

test_storage .py: test_can_retrieve_some_stored_address :

- during reuse phase (0.07 seconds):
- Typical runtimes : ~ 64ms , ~ 0% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (2.41 seconds):
- Typical runtimes : 261 -296 ms , ~ 0% in data generation
- 9 passing examples , 0 failing examples , 0 invalid examples

- Stopped because settings . max_examples =10

test_storage .py: test_can_retrieve_some_stored_bytes :

- during reuse phase (0.09 seconds):
- Typical runtimes : ~ 66ms , ~ 1% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (2.45 seconds):
- Typical runtimes : 260 -297 ms , ~ 0% in data generation
- 9 passing examples , 0 failing examples , 0 invalid examples

- Stopped because settings . max_examples =10

test_storage .py: test_can_retrieve_some_stored_bool :

- during reuse phase (0.16 seconds):
- Typical runtimes : ~ 129ms , ~ 0% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (2.53 seconds):
- Typical runtimes : 264 -336 ms , ~ 0% in data generation
- 9 passing examples , 0 failing examples , 0 invalid examples

- Stopped because settings . max_examples =10

test_storage .py: test_can_retrieve_some_stored_int :

- during reuse phase (0.09 seconds):
- Typical runtimes : ~ 63ms , ~ 1% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (2.54 seconds):
- Typical runtimes : 259 -368 ms , ~ 0% in data generation
- 9 passing examples , 0 failing examples , 0 invalid examples

- Stopped because settings . max_examples =10

test_storage .py: test_can_retrieve_some_stored_bytes32 :

- during reuse phase (0.09 seconds):
- Typical runtimes : ~ 67ms , ~ 0% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (2.45 seconds):
- Typical runtimes : 258 -294 ms , ~ 0% in data generation
- 9 passing examples , 0 failing examples , 0 invalid examples

- Stopped because settings . max_examples =10

test_storage .py: test_different_types_are_independent :

Page | 83

Rocket Pool Protocol Review Test Suite

- during reuse phase (0.91 seconds):
- Typical runtimes : 346 -555 ms , ~ 0% in data generation
- 2 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (46.08 seconds):
- Typical runtimes : 0 -577 ms , ~ 62% in data generation
- 48 passing examples , 0 failing examples , 327 invalid examples

- Stopped because settings . max_examples =50

=========================== short test summary info =========================
XFAIL tests / tests / test_RPL .py :: test_invalid_change_with_inflation
XFAIL tests / tests / test_RPL .py :: test_can_get_same_from_two_intervals
XFAIL tests / tests / test_RPL .py :: test_can_get_same_from_multiple_intervals
XFAIL tests / tests / test_auction .py :: test_bid_rounding

leftover ether after rounding of claimed RPL
XFAIL tests / tests / test_node .py :: test_trusted_needs_more_rpl_to_create_unbonded_minipool

Reported issue : unbonded minipools have a proportionally smaller RPL requirement .
XFAIL tests / tests / test_trusted_dao .py :: test_execute_proposal_direct

Able to call RocketDAOProposal contract directly
XFAIL tests / tests / test_trusted_dao .py :: test_proposal_replace

Second event argument should be the address of the replacement member
XFAIL tests / tests / test_trusted_dao .py :: test_upgrade_rpl_token_contract_with_empty_abi

Should not be able to upgrade RPL token contract
XFAIL tests / tests / test_trusted_dao .py :: test_upgrade_abi_with_existing_abi

Should not succeed in upgrading abi when new and old abi are the same
XFAIL tests / tests / test_trusted_dao_reporting .py :: test_malicious_withdrawal_reporting [True]

Reported issue : replaced DAO members can submit the same exits , increasing voting power
XFAIL tests / tests / test_trusted_dao_reporting .py :: test_malicious_withdrawal_reporting [False]

Reported issue : replaced DAO members can submit the same exits , increasing voting power

================= 130 passed, 11 xfailed in 505.09s (0:08:25) ===============

Page | 84

Rocket Pool Protocol Review Round Two Test Suite

Appendix B Round Two Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are provided alongside thisdocument. The brownie framework was used to perform these tests and the output is given below.

This display includes changed test results, reflecting identified issues that were fixed, as well as new tests imple-mented in the subsequent round of review.
Brownie v1 .14.3 - Python development framework for Ethereum

============================= test session starts ==========================

test_RPL .py: test_rpl_deploy_vars PASSED [0%]
test_RPL .py: test_daosettings_match_views PASSED [1%]
test_RPL .py: test_inflation_calculate_changes PASSED [2%]
test_RPL .py: test_invalid_change_with_inflation XFAIL [3%]
test_RPL .py: test_inflation_no_mint_tokens_before_interval PASSED [3%]
test_RPL .py: test_inflation_can_mint_after_default_interval PASSED [4%]
test_RPL .py: test_inflation_can_mint_after_set_interval PASSED [5%]
test_RPL .py: test_cannot_mint_after_minting_in_same_interval PASSED [6%]
test_RPL .py: test_cannot_swap_tokens_if_not_assigned PASSED [6%]
test_RPL .py: test_cannot_mint_without_allowance PASSED [7%]
test_RPL .py: test_cannot_swap_more_than_allowance PASSED [8%]
test_RPL .py: test_can_swap_tokens_balance PASSED [9%]
test_RPL .py: test_can_swap_tokens_in_multiple_calls PASSED [9%]
test_RPL .py: test_cannot_swap_greater_than_balance PASSED [10%]
test_RPL .py: test_can_swap_during_after_inflation PASSED [11%]
test_RPL .py: test_can_get_same_from_two_intervals PASSED [12%]
test_RPL .py: test_can_get_same_from_multiple_intervals XFAIL [12%]
test_auction .py: test_auction_settings PASSED [13%]
test_auction .py: test_create_lot_insufficient_balance PASSED [14%]
test_auction .py: test_create_lot_disabled PASSED [15%]
test_auction .py: test_create_lot PASSED [15%]
test_auction .py: test_place_bid_zero_value PASSED [16%]
test_auction .py: test_place_bid_nonexistent_lot PASSED [17%]
test_auction .py: test_place_bid_bidding_disabled PASSED [18%]
test_auction .py: test_place_bid_lot_expired PASSED [18%]
test_auction .py: test_place_bid_allocation_exhausted PASSED [19%]
test_auction .py: test_place_bid_refund_excess PASSED [20%]
test_auction .py: test_place_bid PASSED [21%]
test_auction .py: test_claim_bid_nonexistent_lot PASSED [21%]
test_auction .py: test_claim_bid_no_claim PASSED [22%]
test_auction .py: test_claim_bid PASSED [23%]
test_auction .py: test_bid_rounding XFAIL [24%]
test_auction .py: test_recover_unclaimed_bidding_not_concluded PASSED [25%]
test_auction .py: test_recover_unclaimed_no_rpl PASSED [25%]
test_auction .py: test_recover_unclaimed PASSED [26%]
test_auction .py: test_full_auction PASSED [27%]
test_dao_protocol .py: test_guardian_bootstrap_settings PASSED [28%]
test_dao_protocol .py: test_non_guardian_bootstrap_settings PASSED [28%]
test_dao_protocol .py: test_guardian_disable_bootstrap_mode PASSED [29%]
test_dao_protocol .py: test_guardian_change_setting_bootstrap_disabled PASSED [30%]
test_deploy .py: test_registered_instance_registration [rocketVault] PASSED [31%]
test_deploy .py: test_registered_instance_registration [rocketAuctionManager] PASSED [31%]
test_deploy .py: test_registered_instance_registration [rocketDepositPool] PASSED [32%]
test_deploy .py: test_registered_instance_registration [rocketMinipoolDelegate] PASSED [33%]
test_deploy .py: test_registered_instance_registration [rocketMinipoolFactory] PASSED [34%]
test_deploy .py: test_registered_instance_registration [rocketMinipoolManager] PASSED [34%]
test_deploy .py: test_registered_instance_registration [rocketMinipoolQueue] PASSED [35%]
test_deploy .py: test_registered_instance_registration [rocketMinipoolStatus] PASSED [36%]
test_deploy .py: test_registered_instance_registration [rocketNetworkBalances] PASSED [37%]
test_deploy .py: test_registered_instance_registration [rocketNetworkFees] PASSED [37%]
test_deploy .py: test_registered_instance_registration [rocketNetworkPrices] PASSED [38%]
test_deploy .py: test_registered_instance_registration [rocketNetworkWithdrawal PASSED [39%]
]

Page | 85

Rocket Pool Protocol Review Round Two Test Suite

test_deploy .py: test_registered_instance_registration [rocketRewardsPool] PASSED [40%]
test_deploy .py: test_registered_instance_registration [rocketClaimDAO] PASSED [40%]
test_deploy .py: test_registered_instance_registration [rocketClaimNode] PASSED [41%]
test_deploy .py: test_registered_instance_registration [rocketClaimTrustedNode] PASSED [42%]
test_deploy .py: test_registered_instance_registration [rocketNodeDeposit] PASSED [43%]
test_deploy .py: test_registered_instance_registration [rocketNodeManager] PASSED [43%]
test_deploy .py: test_registered_instance_registration [rocketNodeStaking] PASSED [44%]
test_deploy .py: test_registered_instance_registration [rocketDAOProposal] PASSED [45%]
test_deploy .py: test_registered_instance_registration [rocketDAONodeTrusted] PASSED [46%]
test_deploy .py: test_registered_instance_registration [rocketDAONodeTrustedPro PASSED [46%]
posals]
test_deploy .py: test_registered_instance_registration [rocketDAONodeTrustedAct PASSED [47%]
ions]
test_deploy .py: test_registered_instance_registration [rocketDAONodeTrustedUpg PASSED [48%]
rade]
test_deploy .py: test_registered_instance_registration [rocketDAONodeTrustedSet PASSED [49%]
tingsMembers]
test_deploy .py: test_registered_instance_registration [rocketDAONodeTrustedSet PASSED [50%]
tingsProposals]
test_deploy .py: test_registered_instance_registration [rocketDAOProtocol] PASSED [50%]
test_deploy .py: test_registered_instance_registration [rocketDAOProtocolPropos PASSED [51%]
als]
test_deploy .py: test_registered_instance_registration [rocketDAOProtocolAction PASSED [52%]
s]
test_deploy .py: test_registered_instance_registration [rocketDAOProtocolSettin PASSED [53%]
gsInflation]
test_deploy .py: test_registered_instance_registration [rocketDAOProtocolSettin PASSED [53%]
gsRewards]
test_deploy .py: test_registered_instance_registration [rocketDAOProtocolSettin PASSED [54%]
gsAuction]
test_deploy .py: test_registered_instance_registration [rocketDAOProtocolSettin PASSED [55%]
gsNode]
test_deploy .py: test_registered_instance_registration [rocketDAOProtocolSettin PASSED [56%]
gsNetwork]
test_deploy .py: test_registered_instance_registration [rocketDAOProtocolSettin PASSED [56%]
gsDeposit]
test_deploy .py: test_registered_instance_registration [rocketDAOProtocolSettin PASSED [57%]
gsMinipool]
test_deploy .py: test_registered_instance_registration [rocketTokenRPLFixedSupp PASSED [58%]
ly]
test_deploy .py: test_registered_instance_registration [rocketTokenRETH] PASSED [59%]
test_deploy .py: test_registered_instance_registration [rocketTokenRPL] PASSED [59%]
test_deploy .py: test_registered_instance_registration [addressQueueStorage] PASSED [60%]
test_deploy .py: test_registered_instance_registration [addressSetStorage] PASSED [61%]
test_deploy .py: test_registered_instance_registration [casperDeposit] PASSED [62%]
test_deploy .py: test_registered_abi_only PASSED [62%]
test_deploy .py: test_storage_should_be_initialised PASSED [63%]
test_deploy .py: test_owner_should_not_be_registered_as_a_contract PASSED [64%]
test_minipool_reward .py: test_get_minipool_reward_positive [0] PASSED [65%]
test_minipool_reward .py: test_get_minipool_reward_positive [16 ether] PASSED [65%]
test_minipool_reward .py: test_get_minipool_reward_positive [32 ether] PASSED [66%]
test_minipool_reward .py: test_get_minipool_reward_negative [0] PASSED [67%]
test_minipool_reward .py: test_get_minipool_reward_negative [16 ether] PASSED [68%]
test_minipool_reward .py: test_get_minipool_reward_negative [32 ether] PASSED [68%]
test_node .py: test_cannot_create_minipool_without_rpl_stake PASSED [69%]
test_node .py: test_can_create_minipool_when_staking_rpl [MinipoolDepositCls .FU PASSED [70%]
LL]
test_node .py: test_can_create_minipool_when_staking_rpl [MinipoolDepositCls .HA PASSED [71%]
LF]
test_node .py: test_normal_node_cannot_create_unbonded_minipool PASSED [71%]
test_node .py: test_trusted_node_cannot_create_without_staked_rpl [MinipoolDepo PASSED [72%]
sitCls .FULL]
test_node .py: test_trusted_can_create_minipool_with_any_deposit_amount [Minipo PASSED [73%]
olDepositCls .FULL]
test_node .py: test_trusted_node_cannot_create_without_staked_rpl [MinipoolDepo PASSED [74%]
sitCls .HALF]
test_node .py: test_trusted_can_create_minipool_with_any_deposit_amount [Minipo PASSED [75%]
olDepositCls .HALF]
test_node .py: test_trusted_node_cannot_create_without_staked_rpl [MinipoolDepo PASSED [75%]
sitCls . EMPTY]

Page | 86

Rocket Pool Protocol Review Round Two Test Suite

test_node .py: test_trusted_can_create_minipool_with_any_deposit_amount [Minipo PASSED [76%]
olDepositCls . EMPTY]
test_node .py: test_trusted_needs_more_rpl_to_create_unbonded_minipool XFAIL [77%]
test_node .py: test_node_withdrawal PASSED [78%]
test_node .py: test_payout_before_refund PASSED [78%]
test_rETH .py: test_rETH_deployment_params PASSED [79%]
test_rETH .py: test_rETH_zero_storage PASSED [80%]
test_rETH .py: test_only_network_can_deposit PASSED [81%]
test_rETH .py: test_deposit_reward_respects_updates PASSED [81%]
test_rETH .py: test_can_get_correct_eth_value_at_start PASSED [82%]
test_storage .py: test_can_retrieve_some_stored_uint PASSED [83%]
test_storage .py: test_can_retrieve_some_stored_string PASSED [84%]
test_storage .py: test_can_retrieve_some_stored_address PASSED [84%]
test_storage .py: test_can_retrieve_some_stored_bytes PASSED [85%]
test_storage .py: test_can_retrieve_some_stored_bool PASSED [86%]
test_storage .py: test_can_retrieve_some_stored_int PASSED [87%]
test_storage .py: test_can_retrieve_some_stored_bytes32 PASSED [87%]
test_storage .py: test_different_types_are_independent PASSED [88%]
test_storage .py: test_locking PASSED [89%]
test_trusted_dao .py: test_create_proposal_and_execute PASSED [90%]
test_trusted_dao .py: test_execute_proposal_empty_calldata PASSED [90%]
test_trusted_dao .py: test_cancel_proposal PASSED [91%]
test_trusted_dao .py: test_execute_proposal_direct XFAIL [92%]
test_trusted_dao .py: test_action_join_required PASSED [93%]
test_trusted_dao .py: test_proposal_leave PASSED [93%]
test_trusted_dao .py: test_proposal_replace SKIPPED [94%]
test_trusted_dao .py: test_proposal_kick PASSED [95%]
test_trusted_dao .py: test_challenge_node PASSED [96%]
test_trusted_dao .py: test_upgrade_rpl_token_contract_with_empty_abi XFAIL [96%]
test_trusted_dao .py: test_upgrade_abi_with_existing_abi XFAIL [97%]
test_trusted_dao_reporting .py: test_correct_withdrawal PASSED [98%]
test_trusted_dao_reporting .py: test_malicious_withdrawal_reporting [True] XFAIL [99%]
test_trusted_dao_reporting .py: test_malicious_withdrawal_reporting [False] XFAIL [100%]
============================ Hypothesis Statistics =========================

test_minipool_reward .py: test_get_minipool_reward_positive [0]:

- during reuse phase (0.02 seconds):
- Typical runtimes : ~ 22ms , ~ 3% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (14.35 seconds):
- Typical runtimes : 0 -344 ms , ~ 23% in data generation
- 49 passing examples , 0 failing examples , 17 invalid examples

- Stopped because settings . max_examples =50

test_minipool_reward .py: test_get_minipool_reward_positive [16 ether]:

- during reuse phase (0.27 seconds):
- Typical runtimes : ~ 266ms , ~ 0% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (13.96 seconds):
- Typical runtimes : 0 -309 ms , ~ 24% in data generation
- 49 passing examples , 0 failing examples , 17 invalid examples

- Stopped because settings . max_examples =50

test_minipool_reward .py: test_get_minipool_reward_positive [32 ether]:

- during reuse phase (0.39 seconds):
- Typical runtimes : ~ 358ms , ~ 0% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (13.99 seconds):
- Typical runtimes : 0 -326 ms , ~ 23% in data generation
- 49 passing examples , 0 failing examples , 17 invalid examples

Page | 87

Rocket Pool Protocol Review Round Two Test Suite

- Stopped because settings . max_examples =50

test_minipool_reward .py: test_get_minipool_reward_negative [0]:

- during reuse phase (0.34 seconds):
- Typical runtimes : ~ 334ms , ~ 0% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (13.83 seconds):
- Typical runtimes : 0 -307 ms , ~ 23% in data generation
- 49 passing examples , 0 failing examples , 17 invalid examples

- Stopped because settings . max_examples =50

test_minipool_reward .py: test_get_minipool_reward_negative [16 ether]:

- during reuse phase (0.32 seconds):
- Typical runtimes : ~ 295ms , ~ 0% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (13.81 seconds):
- Typical runtimes : 0 -300 ms , ~ 23% in data generation
- 49 passing examples , 0 failing examples , 17 invalid examples

- Stopped because settings . max_examples =50

test_minipool_reward .py: test_get_minipool_reward_negative [32 ether]:

- during reuse phase (0.30 seconds):
- Typical runtimes : ~ 276ms , ~ 0% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (14.47 seconds):
- Typical runtimes : 0 -330 ms , ~ 24% in data generation
- 49 passing examples , 0 failing examples , 17 invalid examples

- Stopped because settings . max_examples =50

test_storage .py: test_can_retrieve_some_stored_uint :

- during reuse phase (0.24 seconds):
- Typical runtimes : ~ 237ms , ~ 0% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (3.50 seconds):
- Typical runtimes : 344 -456 ms , ~ 0% in data generation
- 9 passing examples , 0 failing examples , 0 invalid examples

- Stopped because settings . max_examples =10

test_storage .py: test_can_retrieve_some_stored_string :

- during reuse phase (0.57 seconds):
- Typical runtimes : 108 -456 ms , ~ 0% in data generation
- 2 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (3.08 seconds):
- Typical runtimes : 0 -484 ms , ~ 40% in data generation
- 8 passing examples , 0 failing examples , 6 invalid examples

- Stopped because settings . max_examples =10

test_storage .py: test_can_retrieve_some_stored_address :

Page | 88

Rocket Pool Protocol Review Round Two Test Suite

- during reuse phase (0.11 seconds):
- Typical runtimes : ~ 86ms , ~ 0% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (3.64 seconds):
- Typical runtimes : 329 -505 ms , ~ 0% in data generation
- 9 passing examples , 0 failing examples , 0 invalid examples

- Stopped because settings . max_examples =10

test_storage .py: test_can_retrieve_some_stored_bytes :

- during reuse phase (0.17 seconds):
- Typical runtimes : ~ 145ms , ~ 0% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (3.67 seconds):
- Typical runtimes : 2 -475 ms , ~ 10% in data generation
- 9 passing examples , 0 failing examples , 1 invalid examples

- Stopped because settings . max_examples =10

test_storage .py: test_can_retrieve_some_stored_bool :

- during reuse phase (0.13 seconds):
- Typical runtimes : ~ 127ms , ~ 0% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (3.62 seconds):
- Typical runtimes : 355 -502 ms , ~ 0% in data generation
- 9 passing examples , 0 failing examples , 0 invalid examples

- Stopped because settings . max_examples =10

test_storage .py: test_can_retrieve_some_stored_int :

- during reuse phase (0.11 seconds):
- Typical runtimes : ~ 99ms , ~ 1% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (3.35 seconds):
- Typical runtimes : 332 -389 ms , ~ 0% in data generation
- 9 passing examples , 0 failing examples , 0 invalid examples

- Stopped because settings . max_examples =10

test_storage .py: test_can_retrieve_some_stored_bytes32 :

- during reuse phase (0.08 seconds):
- Typical runtimes : ~ 79ms , ~ 0% in data generation
- 1 passing examples , 0 failing examples , 0 invalid examples

- during generate phase (3.27 seconds):
- Typical runtimes : 345 -400 ms , ~ 0% in data generation
- 9 passing examples , 0 failing examples , 0 invalid examples

- Stopped because settings . max_examples =10

test_storage .py: test_different_types_are_independent :

- during reuse phase (1.27 seconds):
- Typical runtimes : 481 -784 ms , ~ 0% in data generation
- 2 passing examples , 0 failing examples , 0 invalid examples

Page | 89

Rocket Pool Protocol Review Round Two Test Suite

- during generate phase (73.64 seconds):
- Typical runtimes : 0 -1026 ms , ~ 62% in data generation
- 48 passing examples , 0 failing examples , 327 invalid examples

- Stopped because settings . max_examples =50

=========================== short test summary info ========================
XFAIL tests / tests / test_RPL .py :: test_invalid_change_with_inflation
XFAIL tests / tests / test_RPL .py :: test_can_get_same_from_multiple_intervals
XFAIL tests / tests / test_auction .py :: test_bid_rounding

leftover ether after rounding of claimed RPL
XFAIL tests / tests / test_node .py :: test_trusted_needs_more_rpl_to_create_unbond
ed_minipool

Reported issue : unbonded minipools have a proportionally smaller RPL requi
rement .
XFAIL tests / tests / test_trusted_dao .py :: test_execute_proposal_direct

Able to call RocketDAOProposal contract directly
XFAIL tests / tests / test_trusted_dao .py :: test_upgrade_rpl_token_contract_with_
empty_abi

Should not be able to upgrade RPL token contract
XFAIL tests / tests / test_trusted_dao .py :: test_upgrade_abi_with_existing_abi

Should not succeed in upgrading abi when new and old abi are the same
XFAIL tests / tests / test_trusted_dao_reporting .py :: test_malicious_withdrawal_r
eporting [True]

Reported issue : replaced DAO members can submit the same exits , increasing
voting power

XFAIL tests / tests / test_trusted_dao_reporting .py :: test_malicious_withdrawal_r
eporting [False]

Reported issue : replaced DAO members can submit the same exits , increasing
voting power

============ 122 passed, 1 skipped, 9 xfailed in 609.02s (0:10:09) =========

Page | 90

Rocket Pool Protocol Review Vulnerability Severity Classification

Appendix C Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. Thetotal severity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.
html. [Accessed 2018].

[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].
[3] Docker. Using secrets in docker compose, Available: https://docs.docker.com/engine/swarm/secrets/

#use-secrets-in-compose.
[4] GavinWood. Ethereum: A secure decentralised generalised transaction ledger. EthereumProject Yellow Paper,2014. Petersburg Version 41c1837 – Updated February 2021, Available: https://ethereum.github.io/

yellowpaper/paper.pdf.
[5] Sigma Prime. Solidity Security - Delegatecall. Blog, 2018, Available: https://blog.sigmaprime.io/

solidity-security.html#delegatecall. [Accessed 2018].

Page | 91

https://blog.sigmaprime.io/solidity-security.html
https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/
https://docs.docker.com/engine/swarm/secrets/#use-secrets-in-compose
https://docs.docker.com/engine/swarm/secrets/#use-secrets-in-compose
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://blog.sigmaprime.io/solidity-security.html#delegatecall
https://blog.sigmaprime.io/solidity-security.html#delegatecall

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Unprotected Storage Allows Compromise During Deployment
	Insufficient Delay for RocketNodeStaking.withdrawRPL()
	Node Operators Can Lose All Funds Via An Invalid Signature
	Trusted DAO Member Multiple Vote via Replace
	Less Secure Node Account Can Set Withdrawal Address
	Delayed Refunds for "FullDeposit" Minipools
	Unmarshalling Pointers as nil
	SSH Passphrase as Command Line Argument
	Insufficient Password Strength & Complexity Requirements
	Panic in the Unmarshalling of ValidatorPublicKey & ValidatorSignature
	Incorrect Access Control List for _upgradeContract() Function
	Network Contracts Have Unrestricted Access to Storage
	Divide before Multiply
	Refund of Successful Challenge
	Inaccurate calculation of getTotalEffectiveRPLStake
	Reliance on ETH1 Provider
	Ineffective RPL Staking Collateral
	Likely Gas Savings When Setting RocketStorage Values
	Gas Savings via Bulk and Update Storage Functionality
	RocketTokenRPL.swapTokens gas savings
	Unhandled Errors
	Unused and Lack of Constant Variables
	Consolidation of RocketDAONodeTrustedActions
	Lack of Input Validation
	Suboptimal Definition of MiniPool Storage Layout
	DAO Settings Checks
	Rounding of Auction Bids
	Improper Emitting of Events
	Potential Settings "Getter" Gas Optimizations
	RocketMinipool Deployment Gas Optimisations
	Distributed Storage Key Namespace Design and Organisation
	Functions Can Be Declared External For Gas Savings
	Miscellaneous Rocket Pool Contract Issues

	Round Two Findings
	Inaccurate RPL Inflation When Minting Multiple Intervals At Once
	Unexpected Behaviour If RPL Inflation Rate Set to Zero
	Node Operator Can Refuse to Distribute Minipool Funds
	Node Operator Can Revert processWithdrawal()
	Unhandled Errors — Round Two
	Frequent RPL Reward Claim Requirement Unevenly Impacts Small Node Operators
	Inconsistent User Deposit Gas Estimation
	Miscellaneous Rocket Pool Contract Issues — Round Two

	Test Suite
	Round Two Test Suite
	Vulnerability Severity Classification

