
Rocket Pool

Pre-Merge Upgrades
Version: 2.0

June, 2022

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Findings Summary . 3
Detailed Findings 4

Summary of Findings 5Insufficient Input Validation In executeRewardSnapshot() . 6Improper Access Control For createProxy() . 7Inaccurate Priority Fee Distribution When Changing Minipool Count 8Improper Migration Access Control Allows Interference . 9Differing Thresholds for Node Penalties . 10Node Operator Can Block Priority Fee Distribution . 11Unchecked Return Value For Low Level create2 . 12Inconsistent constructor can lead to unusable contract . 14Protocol DAO Treasury Centralisation Risk . 15Incorrect getFeeDistributorInitialised() In Some Cases . 16Revert Error Message Not Propagated . 17Miscellaneous general comments . 18
A Vulnerability Severity Classification 20

1

Pre-Merge Upgrades Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Rocket Pool smart con-tracts. The review focused solely on the security aspects of the Solidity implementation of the contract, thoughgeneral recommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the upgrades and intended purposes of the Rocket Pool smart contractscontained within the scope of the security review. A summary followed by a detailed review of the discoveredvulnerabilities is then given which assigns each vulnerability a severity rating (see Vulnerability Severity Classi-fication), an open/closed/resolved status and a recommendation. Additionally, findings which do not have directsecurity implications (but are potentially of interest) are marked as informational.
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Rocket Pool smart contracts.

Overview

Rocket Pool is a decentralised staking network focused on the Ethereum consensus beacon chain. The long-standing Ethereum chain (the execution layer) and the beacon chain are in the process of undergoing a hard-fork(colloquially known as “themerge”) to unify the two chains. This significant upgrade requires modifications to theRocket Pool protocol to handle the new features and complications that themerge brings to Ethereum consensusstakers. This review is focused on the upgrades proposed by Rocket Pool to handle the new merge features andcorrect some small issues in the previous design.
The modifications to the Rocket Pool protocol fundamentally consist of the following:

• Fee Distribution System - After the merge, validators will start receiving fees from transactions when theypropose blocks. Half of these should rightfully go to rETH holders and as such a fee distribution systemhas been introduced.
• Improved Reward System - Some small issues with the previous RPL reward system design has warrantedan upgrade of the system and is included in this review.
• Deposit Fee - A 24 hour delay that was imposed to rETH tokens after being minted preventing them frombeing burned or transferred has been lifted in favour of adding a small deposit fee.

Page | 2

Pre-Merge Upgrades Security Assessment Summary

Security Assessment Summary

This review was conducted on the files hosted on the RocketPool repository and the review focused on thechanges introduced between commits 24e7a6e and 99e984.
A subsequent round of review targeted commit f7657e6 and focused solely on verifying whether previouslyidentified issues had been addressed.
Note: the OpenZeppelin libraries and dependencies were excluded from the scope of this assessment.

The manual code review section of the report, focused on identifying any and all issues/vulnerabilities associ-ated with the business logic implementation of the contracts. Specifically, their internal interactions, intendedfunctionality and correct implementation with respect to the underlying functionality of the Ethereum VirtualMachine (for example, verifying correct storage/memory layout). Additionally, the manual review process fo-cused on all known Solidity anti-patterns and attack vectors. These include, but are not limited to, the followingvectors: re-entrancy, front-running, integer overflow/underflow and correct visibility specifiers. For a more thor-ough, but non-exhaustive list of examined vectors, see [1, 2].
To support this review, the testing team used the following automated testing tools:

• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither
• Surya: https://github.com/ConsenSys/surya

Output for these automated tools is available upon request.

Findings Summary

The testing team identified a total of 12 issues during this assessment. Categorized by their severity:
• High: 1 issue.
• Medium: 2 issues.
• Low: 4 issues.
• Informational: 5 issues.

Page | 3

https://github.com/rocket-pool/rocketpool
https://github.com/rocket-pool/rocketpool/compare/24e7a6e14e70e17e5a434a3234505cf1001f0ce5..99e9841ed217c0d8c31e38c86cfb9bca64449bc8
 https://github.com/rocket-pool/rocketpool/tree/f7657e64591597e45116c34245d2ef7eed8b8243
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya

Pre-Merge Upgrades Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Rocket Pool smart con-tracts. Each vulnerability has a severity classification which is determined from the likelihood and impact of eachissue by the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 4

Summary of Findings

ID Description Severity Status
RPM-01 Insufficient Input Validation In executeRewardSnapshot() High Resolved

RPM-02 Improper Access Control For createProxy() Medium Resolved

RPM-03 Inaccurate Priority Fee Distribution When Changing Minipool Count Medium Resolved

RPM-04 Improper Migration Access Control Allows Interference Low Resolved

RPM-05 Differing Thresholds for Node Penalties Low Resolved

RPM-06 Node Operator Can Block Priority Fee Distribution Low Closed

RPM-07 Unchecked Return Value For Low Level create2 Low Resolved

RPM-08 Inconsistent constructor can lead to unusable contract Informational Resolved

RPM-09 Protocol DAO Treasury Centralisation Risk Informational Closed

RPM-10 Incorrect getFeeDistributorInitialised() In Some Cases Informational Resolved

RPM-11 Revert Error Message Not Propagated Informational Resolved

RPM-12 Miscellaneous general comments Informational Resolved

5

Pre-Merge Upgrades Detailed Findings

RPM-01 Insufficient Input Validation In executeRewardSnapshot()

Asset RocketRewardsPool.sol

Status Resolved: In commit ce56d42
Rating Severity: High Impact: High Likelihood: Medium

Description

A missing input validation step in executeRewardSnapshot() can allow execution of an old submission, resulting incorruption of the state and potentially misplaced funds.
executeRewardSnapshot() is intended for use in unusual circumstances where changes to the number of ODAOmem-
bers or the threshold required for consensus1 result in a previous set of submissions reaching the required threshold.
The current implementation of executeRewardSnapshot() does not check that the RewardSubmission argument passedto it is associated with the current round of submissions i.e. it does not validate that
_submission.rewardIndex == getRewardIndex() .
This can allow previously executed submissions to be trivially replayed. Should the currently available funds be suffi-cient, the old submission is executed successfully, distributing funds incorrectly and incrementing the round number.This makes it impossible for execution of valid submissions for that round number and may be repeated to continuallydisrupt valid submissions (until eventually disabled via a code upgrade).
In the event of changes to the number of ODAOmembers or the consensus threshold, it can be possible for a colludingODAO minority to make malicious submissions that can later be executed once the effective threshold value shrinks.Even if the malicious ODAO members were to be kicked, their old submissions are still present and may be possible toexecute.
Should the meaning of the network indices change (used to refer to various network relayers), old submissions mayalso misdirect funds to incorrect network relayers. For example, if the index 1 previously referred to the Arbitrumnetwork and was later changed to direct to a relayer for Loopring, the values involved may be incorrect and difficult forrecipients to claim.
There do not appear to be any unit tests that exercise executeRewardSnapshot() , let alone how it handles maliciousinput.
Recommendations
Modify executeRewardSnapshot() to contain a check similar to line [120], like
require(_submission.rewardIndex == getRewardIndex()); .
Update unit tests to cover executeRewardSnapshot() and, in particular, exercise scenarios involving attempts to exe-cute a previously executed submission.
Resolution
The recommended require statement was added.

1The RocketDAOProtocolSettingsNetwork.getNodeConsensusThreshold() setting.

Page | 6

https://github.com/rocket-pool/rocketpool/commit/ce56d42d

Pre-Merge Upgrades Detailed Findings

RPM-02 Improper Access Control For createProxy()
Asset RocketNodeDistributorFactory.sol

Status Resolved: In commit 445efcd
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

No access control restrictions are implemented for createProxy() , allowing any account to directly create a
RocketNodeDistributor instance and bypass the intended initialisation. A malicious entity can exploit this to preventexisting node operators from receiving an appropriate share of their priority fee rewards.
createProxy() is intended for use by node operators to deploy a RocketNodeDistributor contract at a predictableaddress (one instance for each node operator). This instance is used (post merge) as a recipient for transaction priority
fees (a.k.a. tips) that are awarded to the node operator when including transactions in blocks they produce.2
These tips are intended to be split between the node operator and the rETH holders (protocol users), with the nodeoperator receiving a share corresponding to the staked ETH collateral they own (usually half) plus a fee deducted fromthe users’ portion.3
When executed as designed, existing node operators execute RocketNodeManager.initialiseFeeDistributor() to cal-culate their current node average fee (the proportion to deduct from the rETH holders’ share) and deploy their distributorcontract.
Should someone have already deployed the distributor contract by executing createProxy() directly, a call to
RocketNodeManager.initialiseFeeDistributor() will revert at line [166] due to getFeeDistributorInitialised() re-
turning true (See RPM-10). It becomes impossible to correctly initialise "node.average.fee.numerator" without a
code update, but it is treated as if it were correctly initialised to 0. Once incorrectly distributed, these tips become dif-ficult to recover and, because anyone can execute RocketNodeDistributor.distribute() , a compliant node operatorcannot prevent their rewards from being distributed.
Although easily exploited, an attacker would need to pay gas fees to deploy the RocketNodeDistributor instance and itwould be difficult for them to directly profit, as undeserved tips are diluted across all rETH holders. Any profit would bebest achieved through indirect means — like causing a scene and shorting RPL. As such, the likelihood rating is deemed
medium.
Recommendations

Implement appropriate access controls for createProxy() , to only allow the protocol’s current rocketNodeManager toexecute.
Resolution
A check was added to createProxy() , to safely restrict execution to only the protocol’s current rocketNodeManager .

2This is equivalent to the current EIP-1559 mechanism but the priority fees are delivered to the block producing validator instead of the miner.3Where this fee is calculated as the mean nodeFee value across the minipools controlled by the operator.

Page | 7

https://github.com/rocket-pool/rocketpool/commit/445ef4cd
https://eips.ethereum.org/EIPS/eip-1559

Pre-Merge Upgrades Detailed Findings

RPM-03 Inaccurate Priority Fee Distribution When Changing Minipool Count
Asset RocketNodeManager.sol & RocketMinipoolManager.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

When changing the number of active minipools, any existing priority fee rewards are for that node are distributed.When combined with changes to the node’s average node fee, the order in which this occurs can cause the funds tobe incorrectly distributed between the node operator and the rETH holders.
Priority fees are distributed based on themean fee across the node operator’s activeminipools. Currently, a distributionis triggered at RocketNodeManager.sol lines [197,204], as part of updating the number of active minipools but after the
average node fee has been updated. While this ensures the node has a properly initialised RocketNodeDistributorbefore being allowed to stake with more minipools, any funds already in the minipool should really be distributedaccording to the previous average fee value.
This has the largest impact in the situation where a node operator has a lot of value in their RocketNodeDistributor
and their lastminipool is being set to a withdrawable status. Here decrementNodeStakingMinipoolCount() is executed,
reducing the number of active minipools to 0 (getNodeStakingMinipoolCount(nodeAddress) == 0). In that situation,the average node fee is reduced to 0 so the distribution would send the operator none of their deserved share of theuser rewards.

Recommendations

In RocketMinipoolManager , execute the equivalent of RocketNodeManager._distribute() at lines [207 & 226], beforeany change to the node’s minipool count and the average fee.
Consider replacing RocketNodeManager._distribute() with a function requiring that the fee distributor has been ini-tialised and there is no pending priority fee balance to distribute(i.e. getFeeDistributorInitialised(_nodeAddress) && distributorAddress.balance == 0).

Resolution

This has been successfully resolved in commit e0fa60e.
An equivalent of the previous RocketNodeManager._distribute() implementation is executed at the start of
incrementNodeStakingMinipoolCount() and decrementNodeStakingMinipoolCount() prior to any other state changes.
The RocketNodeManager functions increaseAverageNodeFeeNumerator() and decreaseAverageNodeFeeNumerator() have
been removed without issue, as they were used only by the RocketMinipoolManager .

Page | 8

https://github.com/rocket-pool/rocketpool/commit/e0fa60ef

Pre-Merge Upgrades Detailed Findings

RPM-04 Improper Migration Access Control Allows Interference
Asset RocketUpgradeOneDotOne.sol

Status Resolved: In commit 2240d20
Rating Severity: Low Impact: Medium Likelihood: Low

Description

The set() function has insufficient access control, allowing others to interfere with the initialisation of the
RocketUpgradeOneDotOne contract.
Part of the initialisation for RocketUpgradeOneDotOne is performed in a function separate to the constructor, named
set() . This is used to spread the gas costs across multiple blocks.
It is possible for a malicious actor to front-run a transaction executing set() before the migration account does,stopping it from being correctly initialised. This posses little danger to the protocol, as this interference would be quitenoticeable and any upgrade proposal involving a corrupted RocketUpgradeOneDotOne contract should be rejected bythe ODAO. As such, the impact is limited to the reasonably large gas costs involved with deploying and initialisinganother RocketUpgradeOneDotOne instance.
Any attempts at redeployment using unchanged code could be repeatedly interfered with, but the appropriate fix issimple so such a scenario is unlikely.

Recommendations

Consider limiting access to set() , so only the guardian or a contract owner may successfully execute it.

Resolution

Appropriate access restrictions were added, to only allow execution by the account that deployed the contract (set()had been split into two functions to further spread gas costs across multiple blocks).

Page | 9

https://github.com/rocket-pool/rocketpool/commit/2240d202

Pre-Merge Upgrades Detailed Findings

RPM-05 Differing Thresholds for Node Penalties
Asset RocketNetworkPenalties.sol

Status Resolved: In commit 508bb32
Rating Severity: Low Impact: Medium Likelihood: Low

Description

There are two differing thresholds used in submitPenalty() and executeUpdatePenalty() . The former uses
getNodePenaltyThreshold() on line [49] and the latter uses getNodeConsensusThreshold() on line [68].
Depending on the configuration parameters of these thresholds (specifically the case that the consensus threshold issmaller than the node penalty threshold) any user can execute node penalties below the desired node penalty thresholdlimit.

Recommendations

Make sure these thresholds match each other (i.e. use the same threshold for both functions).
Implement unit tests to explore scenarios where these threshold values are different.

Resolution

The penalty threshold on line [68] has been modified to getNodePenaltyThreshold() , making the two functions con-sistent.

Page | 10

https://github.com/rocket-pool/rocketpool/commit/508bb325

Pre-Merge Upgrades Detailed Findings

RPM-06 Node Operator Can Block Priority Fee Distribution
Asset RocketNodeDistributorDelegate.sol

Status Closed: See the Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

A malicious node operator can choose to block distribution of any priority fees, effectively locking them in their
RocketNodeDistributor contract.
A node operator can set their withdrawal address to a contract address that reverts upon receiving ETH from thedistributor contract, causing the call at line [38] in distribute() to fail and revert at line [39].
As the node operator is usually the one to perform the distribution and they would receive a majority of the fees, theyare disincentivised to block the distribution.
Should such a scenario occur, the RocketNodeDistributor can be upgraded after-the-fact to allow the release of funds.

Recommendations

Consider recommending ODAO members penalise obvious offenders.
If this becomes a problem, consider upgrading RocketNodeDistributorDelegate to allow distribute() to succeedshould the ETH transfer to the operator fail. A safer option would involve tracking node operator and rETH holderbalances separately, in order to protect operatorswith a failingwithdrawal fromhaving their funds incorrectly attributedto rETH holders.4

Resolution

This is acknowledged by the development team. The Node operators are not incentivised to block fees, if this becomesan issue the development team will address it.

4A naive solution, in which the require(success); at line [39] were simply removed, could cause loss of node operator funds. Consider a scenario
in which 1 ether is to be distributed evenly (50% : 50%) between the operator and rETH holders but the operator’s transfer at line [38] fails (e.g.due to insufficient gas).
On first execution of distribute() , the rETH users will receive 1

2 ether and the operator transfer will fail.
A subsequent execution of distribute() would see an attempt to split the remaining 1

2 ether between the users and operator, even though the
operator should receive all the remaining value.

Page | 11

Pre-Merge Upgrades Detailed Findings

RPM-07 Unchecked Return Value For Low Level create2
Asset RocketNodeDistributorFactory.sol & RocketMinipoolFactory.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

Some Rocket Pool contracts use the low-level create2 opcode to deploy contracts. However, the contracts fail toadequately check whether this deployment was successful.
The EVM create2 opcode returns 0 if the contract deployment fails.5 This can be caused by insufficient gas, thecontract initialisation code reverting, or a contract already existing at that address.
In RocketMinipoolFactory , extcodesize is used to check that the deployment was successful. This checks that a con-tract exists at the address, but would, however, return a false positive in the situation where a contract already existedat that address. A separate check in RocketNodeDeposit.sol deposit() (at line [[]45]) protects against deploying aminipool at the same address as a previous one.
In RocketNodeDistributorFactory , no similar check occurs. It is possible for initialiseFeeDistributor() and
registerNode() in RocketNodeManager to execute successfully, even though contract creation failed. This also emits
unnecessary ProxyCreated(address(0)) logs that can cause trouble for chain analytics.
This may be more problematic in combination with other issues. However, in the case of RPM-02, it is helpful that
registerNode() can complete even though someone already deployed a contract at that address. It is preferable toavoid relying on this.
Recommendations
As a best practice, ensure that whenever a low-level create2 is used, the failure condition is checked by comparing
the return value against address(0) .
In the case of RocketMinipoolFactory , this constitutes no risk to the protocol and is fine to introduce as part of a future
update. For RocketNodeDistributorFactory , this should be resolved prior to deployment.
In general, prefer to use the high-level Solidity language features unless there is a good reason otherwise. If such areason exists, document it via in–code comments. For example, the assembly at RocketNodeDistributorFactory.sollines [39-47] could be replaced with the following:
RocketNodeDistributor dist = new RocketNodeDistributor{salt: ''}(_nodeAddress, rocketStorage)

This also has the advantage of enforcing type-safety at compile-time and including a check to revert should the de-ployment fail.
5This can be most easily checked experimentally, and can be confirmed in the yellow paper definitions for instructions 0xf0 and 0xf5:

µ′s [0] ≡ xwhere x = 0 if z = 0, i.e., the contract creation process failed, or Ie = 1024 (the maximum call depth limit is reached) or µs [0] >
σ [Ia]b (balance of the caller is too low to fulfil the value transfer); ([3] p37 — Appendix H.2 instruction 0xf0)

This states that the head of the stack (containing the result value) is set to 0 on failure. More easily readable reference documentation could not befound that states the failure behaviour.

Page | 12

Pre-Merge Upgrades Detailed Findings

Resolution

This was resolved in commit 445ef4c by using the high-level Solidity feature, as described above.
RocketMinipoolFactory remains unchanged but constitutes no risk.

Page | 13

https://github.com/rocket-pool/rocketpool/commit/445ef4cd

Pre-Merge Upgrades Detailed Findings

RPM-08 Inconsistent constructor can lead to unusable contract
Asset RocketDAOProtocolSettingsNetwork.sol

Status Resolved: In commit a7f3484
Rating Informational

Description

Unlike other RocketDAOProtocolSettings contracts, the constructor() in RocketDAOProtocolsSettingsNetwork does
not set any initial settings and does not set the deployed boolean.
This structure is not only inconsistent with other similar contracts, but if this contract is deployed with a fresh
RocketStorage , variables cannot be set due to the onlyDAOProtocolProposal modifier checking for a set deployedsetting.
Therefore a fresh install of all Rocket Pool contracts could leave this contract unusable.

Recommendations

Consider adding the same constructor pattern that is used in the other contracts of this class. Specifically, check if the
deployed boolean is set; if not, set any required initial variables and then set the deployed boolean.

Resolution

The deployed boolean is now checked in the constructer and a similar pattern is used for initialising the contractsdefault settings.

Page | 14

https://github.com/rocket-pool/rocketpool/commit/a7f34848

Pre-Merge Upgrades Detailed Findings

RPM-09 Protocol DAO Treasury Centralisation Risk
Asset RocketDAOProtocolProposal.sol & RocketDAOProtocol.sol

Status Closed: See the Resolution
Rating Informational

Description

Should the guardian account (controlled by the Rocket Pool development team) become compromised, it is possible forit to immediately spend all funds managed by the protocol DAO treasury (the RocketClaimDAO contract).
A compromised guardian account may also adjust settings that signal what percentage of RPL inflation rewards shouldbe awarded to the protocol DAO treasury.
In the event of a malicious takeover, the ODAO members may choose to ignore any changes to the value returnedby getRewardsClaimerPerc("rocketClaimDAO") and instead report via RocketRewardsPool.submitRewardSnapshot() a
reward of 0 to be sent to the treasury.

Recommendations

Ensure the ODAO and Rocket Pool community are aware that the Rocket Pool guardian account has direct control overany RPL funds awarded to the Protocol DAO, as well as the ability to set the portion of RPL inflation rewards that aredirected to the protocol DAO.
Consider developing an disaster response plan with the ODAO, so ODAO members know how respond in an emer-gency.
As it is likely important for some protocol DAO funds to be currently available for use (e.g. for funding maintenanceand development of the protocol), disabling access entirely (via a code update) is acknowledged as likely unreasonable.
It may be relevant to limit the amount of funds saved to the treasury until a voting protocol DAO becomes active andthe protocol DAO bootstrap mode can be disabled.
Alternatively, may be worth considering implementing a delay so that bootstrapSpendTreasury() must signal an intentto spend for some time before the spend can be executed. Optimally, this delay would allow the ODAO to prevent thespend by passing a contract upgrade, in the event of compromise.
Sigma Prime notes that this may not be reasonable, should there be valid reasons to spend treasury RPL at short notice.
Another alternative could be to divide the treasury, so that some portion of the funds are in “deep storage” and onlybecome accessible once bootstrap mode is disabled.

Resolution

The guardian account is planned to be migrated to a 2 of 3 multisig to mitigate the centralisation risk before moving toa more DAO-centric solution.

Page | 15

Pre-Merge Upgrades Detailed Findings

RPM-10 Incorrect getFeeDistributorInitialised() In Some Cases
Asset RocketNodeManager.sol

Status Resolved: In commit 445ef4c
Rating Informational

Description

The getFeeDistributorInitialised() function can incorrectly return true in some cases.
Conceptually, a value of true returned by getFeeDistributorInitialised() is intended to indicate that a
RocketNodeDistributor contract is deployed for the node operator and "node.average.fee.numerator" is correctly
set (i.e. that _initialiseFeeDistributor() has executed).
The current implementation checks to see whether a contract exists at the expected address, which does not alwaysimply the intended meaning. This meaning does not hold if a contract can be deployed to that address via other means(as occurs in RPM-02). Should it be possible for some other contract to be deployed to that address, extCodeSize doesnot validate that the contract is a RocketNodeDistributor .
It is probabilistically infeasible to deploy a contract to the same address without using
RocketNodeDistributorFactory.createProxy() (provided keccak256 remains strong), so other scenarios can be safelyignored.

Recommendations

The testing team considers it sufficient to resolve RPM-02 and ensure only _initialiseFeeDistributor() can
execute the RocketNodeDistributorFactory.createProxy() (i.e. that no other network contracts are able to call
createProxy()).
Alternatively, an arguably safer implementation could involve setting a corresponding storage flag when
_initialiseFeeDistributor() is executed.

Resolution

This was resolved by mitigating RPM-02, ensuring only the RocketNodeManager can execute createProxy() .

Page | 16

https://github.com/rocket-pool/rocketpool/commit/445ef4cd

Pre-Merge Upgrades Detailed Findings

RPM-11 Revert Error Message Not Propagated
Asset RocketNodeDistributor.sol

Status Resolved: In commit 0cc6d06
Rating Informational

Description

The RocketNodeDistributor contract acts as a proxy, with an underlying RocketNodeDistributorDelegate executing
the actual logic. Should the delegatecall fail or revert, any returned error message is ignored and not propagated tothe caller.
The logic implemented in the current RocketNodeDistributorDelegate does not return any meaningful error informa-tion.

25 assembly {
calldatacopy(0x0, 0x0, calldatasize())

27 let result := delegatecall(gas(), _target, 0x0, calldatasize(), 0x0, 0)
returndatacopy(0x0, 0x0, returndatasize())

29 switch result case 0 {revert(0, 0)} default {return (0, returndatasize())}
}

As shown at line [29], a revert(0,0) with an empty message is executed should the delegatecall fail.6
However, once deployed, RocketNodeDistributor instances cannot be readily replaced or upgraded. As such, thecurrent implementation would make it troublesome (or infeasible) for future upgrades to return specific error messages.
This is of more relevance as recent solidity versions provide the means to catch and handle errors differently basedon the error message.

Recommendations

Consider modifying the RocketNodeDistributor.fallback() to propagate any revert message, as a means of future-proofing.

Resolution

The proxy contract now propagates error messages as recommended.

6Refer to https://docs.soliditylang.org/en/v0.7.6/yul.html#evm-dialect

Page | 17

https://github.com/rocket-pool/rocketpool/commit/0cc6b065
https://docs.soliditylang.org/en/v0.7.6/yul.html#evm-dialect

Pre-Merge Upgrades Detailed Findings

RPM-12 Miscellaneous general comments
Asset rocketpool: contract/*

Status Resolved: In commit d3d1687
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. Best Practice Recommendations:

• At RocketUpgradeOneDotOne.sol:159 , the executed = true statement should be moved to line [116] toabide by the checks-effects-interactions pattern. There is no real risk of re-entrancy exploits in this contextthough.
• Consider emitting a log in RocketNodeDistributorDelegate.distribute() to allow for more easy data anal-ysis.
• Add a uint8 public constant version = 1 to RocketNodeDistributorDelegate for consistency with theother network contracts.
• At RocketNodeDistributorDelegate.sol:34 , consider replacing 1 ether with a calcbase constant for con-sistency and readability.
• Consider implementing a getSubmitRewardsEnabled() setting, akin to the existing

RocketDAOProtocolSettingsNetwork.getSubmitPricesEnabled() .
• Consider explicitly initialising rocketStorage and nodeAddress in RocketNodeDistributorDelegate to

address(0) in the constructor for improved readability.
2. Reused Storage Prefix:In RocketRewardsPool.sol lines [148-149], the same storage prefix "rewards.snapshot.submitted.node" is usedfor two different types of data — one where the key is based on the entire submission and the other only usingthe rewardIndex .

Although it is infeasible for these keys to collide, it is somewhat confusing and generally preferable to avoid.Consider renaming the prefix used at line [149] to something different.
3. Redundant Line: In RocketNetworkPenalties.sol the line [41] is redundant as the operation on the line aboveis identical.
4. Minor optimisations:

• At RocketNodeManager.sol:150 , getFeeDistributorInitialised() could have its function state mutability
restricted to view .

• At RocketMinipool.sol:131 , contractExists() could have its function state mutability restricted to view .
• At RocketDAONodeTrustedSettingsRewards.sol:39 , replace

keccak256(abi.encodePacked("rewards.network.enabled", uint256(0))) with a constant.
• At RocketNodeManager.sol:212-216 , the lines can be reordered so the getUint() does not execute when

denominator == 0 .

Page | 18

https://github.com/rocket-pool/rocketpool/commit/d3d1687c

Pre-Merge Upgrades Detailed Findings

• In RocketUpgradeOneDotOne.sol , any addresses or ABI’s that can be initialised in the constructor may be set
as immutable to save on storage gas costs (with a corresponding tradeoff of an increase in bytecode size).As this is only intended to be executed once, these savings are not very important.

• At RocketNodeDistributorDelegate.sol:22 , the rETH token address could be set as immutable (instead ofthe key) because it can’t be readily upgraded.
5. Recommended commenting and documentation improvements:

• In RocketNodeDistributorFactory.sol , consider a comment in createProxy() explaining why no salt is
needed — that the initCode is already unique per node address.

• In RocketNodeManager.sol , consider a comment in _distribute() to explain that line [228] will revert if the
node operator does not yet have a RocketNodeDistributor instance deployed.

• In RocketNodeManager.sol , consider a comment in initialiseFeeDistributor() that notes that the loopis safe for all current node operators on mainnet. This may be documented elsewhere, but is also nice tohave in the code.
• In RocketDepositPool.sol:83 , the variable name depositNetFee is slightly confusing. It sounds like the

value may include a fee somehow, rather than being the “deposit minus the fee”. depositNet may be morelegible.
6. Unused variables:The following local variables are unused:

• RocketUpgradeOneDotOne.sol:165 namehash

• RocketUpgradeOneDotOne.sol:187 namehash

7. List of Typos:
• There have been unnecessary string(abi.encodePacked("somestring")) changes made at

RocketMinipool.sol:117 and RocketBase.sol:90 .
Given that these contracts are not readily upgradeable, the changes are assumed to be accidental.

• RocketNodeManager.sol:262 “waiting” should be “waited the”.
• RocketRewardsPool.sol:124,135,144,151 “stake” should be “stack”.
• The comment at RocketDAOProtocol.sol:74 appears to be identical to that at line [68] and is not relevant

for its location in bootstrapSpendTreasury() .

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The comments above have been acknowledged by the development team, and relevant changes actioned in d3d1687where appropriate.

Page | 19

https://github.com/rocket-pool/rocketpool/commit/d3d1687c

Pre-Merge Upgrades Vulnerability Severity Classification

Appendix A Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.html. [Ac-cessed 2018].
[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].
[3] GavinWood. Ethereum: A secure decentralised generalised transaction ledger. EthereumProject Yellow Paper, 2014.Berlin Version b2d0dbf – Updated May 2022, Available: https://ethereum.github.io/yellowpaper/paper.pdf.

Page | 20

https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/
https://ethereum.github.io/yellowpaper/paper.pdf

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Insufficient Input Validation In executeRewardSnapshot()
	Improper Access Control For createProxy()
	Inaccurate Priority Fee Distribution When Changing Minipool Count
	Improper Migration Access Control Allows Interference
	Differing Thresholds for Node Penalties
	Node Operator Can Block Priority Fee Distribution
	Unchecked Return Value For Low Level create2
	Inconsistent constructor can lead to unusable contract
	Protocol DAO Treasury Centralisation Risk
	Incorrect getFeeDistributorInitialised() In Some Cases
	Revert Error Message Not Propagated
	Miscellaneous general comments

	Vulnerability Severity Classification

