
Rocket Pool

Rocket Pool – Houston Upgrade
Smart Contract Security Review

Version: 2.2

March, 2024

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Findings Summary . 3
Detailed Findings 4

Summary of Findings 5ETH Locked In RocketNodeDeposit Contract . 6Challenges Can Be Manipulated Through Arbitrary Path Traversal To Steal Proposal Bond 8Upgraded Contracts Threaten Proposal Bond Liquidity . 10Incorrect Offset When Setting periodsPaid . 12Incorrect Computation Of claimIntervalsPassed . 13Incorrect RPL Stake Calculation During Withdrawal . 14Behavioural Inconsistencies In Protocol Settings Initialisation Code 15Incorrect stake.for.allowed Value . 17Challenged Leaf Indices Can Be Left Unverified Onchain . 18Challengers Can Contest Non-Existent Indices To Steal Proposal Bond 20Implementation Discrepancies With RPIP Specifications . 21Implementation Discrepancies With RPIP Specifications . 22No Checks For Pending Withdrawal Addresses . 23Snapshot Amendments May Lead To Leaf Verification Failures 24Initial Votes Can Be Cast In Phase 2 Without Proof . 25Node’s Votes Can Be Overridden Without Its Knowledge . 26Delegates Are Unable To Vote . 28Inadequate Merkle Height Verification . 29Miscellaneous General Comments . 30
A Test Suite 32

B Vulnerability Severity Classification 34

1

Rocket Pool – Houston Upgrade Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Rocket Pool smart con-tracts. The review focused solely on the security aspects of the Solidity implementation of the contracts, thoughgeneral recommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the Rocket Pool smart contracts contained withinthe scope of the security review. A summary followed by a detailed review of the discovered vulnerabilitiesis then given which assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an
open/closed/resolved status and a recommendation. Additionally, findings which do not have direct security im-plications (but are potentially of interest) are marked as informational.
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Rocket Pool smart contracts.

Overview

The Houston upgrade is largely aimed at introducing a fully onchain DAO to govern the protocol, known as theProtocol DAO or pDAO. It is a truly onchain DAO that does not require snapshot voting or any other 3rd partytools to function.
The upgrade also introduces some other features allowing new integrations and platforms to be built on theprotocol. Some of these include the ability to stake ETH on behalf of node (not just from the node itself) and anew RPL withdrawal address feature that can allow the node operator to supply the ETH for staking and anotherparty to trustlessly provide the RPL for the insurance bond.

Page | 2

Rocket Pool – Houston Upgrade Security Assessment Summary

Security Assessment Summary

This review was conducted on the files hosted on the Rocket Pool repository and were assessed at commitf26996f.
The scope of the review was limited to the following diff, encompassing all changes and additions made to thecontracts in relation to the following:

• The onchain Protocol DAO (pDAO): RPIP-33
• Stake ETH on behalf of node: RPIP-32
• New RPL withdrawal address: RPIP-31

An additional review, limited to pDAO specific functions, was conducted on Rocket Pool repository and wasassessed at commit 7215562c.
Note: the OpenZeppelin libraries and dependencies were excluded from the scope of this assessment.

The manual code review section of the report is focused on identifying any and all issues/vulnerabilities associ-ated with the business logic implementation of the contracts. This includes their internal interactions, intendedfunctionality and correct implementation with respect to the underlying functionality of the Ethereum VirtualMachine (for example, verifying correct storage/memory layout). Additionally, the manual review process fo-cused on all known Solidity anti-patterns and attack vectors. These include, but are not limited to, the followingvectors: re-entrancy, front-running, integer overflow/underflow and correct visibility specifiers. For a more thor-ough, but non-exhaustive list of examined vectors, see [1, 2].
To support this review, the testing team used the following automated testing tools:

• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither
• Surya: https://github.com/ConsenSys/surya

Output for these automated tools is available upon request.

Findings Summary

The testing team identified a total of 19 issues during this assessment. Categorised by their severity:
• Critical: 2 issues.
• High: 4 issues.
• Medium: 4 issues.
• Low: 4 issues.
• Informational: 5 issues.

Note: considering the large number of critical and high severity issues identified during this time-boxed engagement,
Sigma Prime recommends further security testing on the code base in scope prior to any deployment.

Page | 3

https://github.com/rocket-pool/rocketpool
https://github.com/rocket-pool/rocketpool/commit/f26996f0afc1f276254da8104471b64643a8b671
https://github.com/rocket-pool/rocketpool/compare/master..f26996f0afc1f276254da8104471b64643a8b671
https://rpips.rocketpool.net/RPIPs/RPIP-33
https://rpips.rocketpool.net/RPIPs/RPIP-32
https://rpips.rocketpool.net/RPIPs/RPIP-31
https://github.com/rocket-pool/rocketpool
https://github.com/rocket-pool/rocketpool/commit/7215562cbf815dd169c84229dc783c24964a18da
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya

Rocket Pool – Houston Upgrade Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Rocket Pool smart con-tracts. Each vulnerability has a severity classification which is determined from the likelihood and impact of eachissue by the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 4

Summary of Findings

ID Description Severity Status
RPH-01 ETH Locked In RocketNodeDeposit Contract Critical Resolved

RPH-02 Challenges Can Be Manipulated Through Arbitrary Path Traversal ToSteal Proposal Bond Critical Resolved

RPH-03 Upgraded Contracts Threaten Proposal Bond Liquidity High Closed

RPH-04 Incorrect Offset When Setting periodsPaid High Resolved

RPH-05 Incorrect Computation Of claimIntervalsPassed High Resolved

RPH-06 Incorrect RPL Stake Calculation During Withdrawal High Resolved

RPH-07 Behavioural Inconsistencies In Protocol Settings Initialisation Code Medium Closed

RPH-08 Incorrect stake.for.allowed Value Medium Resolved

RPH-09 Challenged Leaf Indices Can Be Left Unverified Onchain Medium Resolved

RPH-10 Challengers Can Contest Non-Existent Indices To Steal Proposal Bond Medium Resolved

RPH-11 Implementation Discrepancies With RPIP Specifications Low Resolved

RPH-12 Implementation Discrepancies With RPIP Specifications Low Resolved

RPH-13 No Checks For Pending Withdrawal Addresses Low Closed

RPH-14 Snapshot Amendments May Lead To Leaf Verification Failures Low Open

RPH-15 Initial Votes Can Be Cast In Phase 2 Without Proof Informational Closed

RPH-16 Node’s Votes Can Be Overridden Without Its Knowledge Informational Closed

RPH-17 Delegates Are Unable To Vote Informational Closed

RPH-18 Inadequate Merkle Height Verification Informational Open

RPH-19 Miscellaneous General Comments Informational Closed

5

Rocket Pool – Houston Upgrade Detailed Findings

RPH-01 ETH Locked In RocketNodeDeposit Contract
Asset RocketNodeDeposit.sol

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

Specific transactions using depositWithCredit() will result in ETH supplied as bond being stuck in RocketNodeDepositcontract indefinitely.
The issue arises when calling depositWithCredit() with msg.value == 0 , but preloading the node with sufficient bal-
ance. The downstream function _processNodeDeposit() has not been updated to cater for situationswhere msg.value
could be zero. Current implementation uses the msg.value assuming it will always be equivalent to a supplied bondamount, which may not be the case anymore.
In depositWithCredit() , if there is an existing node balance to use, it will bewithdrawn from the vault into RocketNodeDeposit

contract. However, in the following code from _processNodeDeposit() , if msg.value is zero (i.e. only using existing
balance), the _preLaunchValue of 1 ETH will also be taken out of the vault and deposited into RocketNodeDeposit con-
tract (to be used in funding the minipool later). The leftover value remaining will be zero, and as such, no deposits willbe made back into the vault, resulting in the ETH balance being stuck in the RocketNodeDeposit contract.
Note, the deposit pool’s deposit.pool.node.balance internal accounting variable will still be increased by
_bondAmount - _preLaunchValue via nodeDeposit() :
if (msg.value < _preLaunchValue) {

shortFall = _preLaunchValue- msg.value;
rocketDepositPool.nodeCreditWithdrawal(shortFall); // @audit this will still withdraw 1 ETH for prelaunch

}
uint256 remaining = msg.value + shortFall - _preLaunchValue;
// Deposit the left over value into the deposit pool
rocketDepositPool.nodeDeposit{value: remaining}(_bondAmount - _preLaunchValue);

As a final execution step, through assignDeposits() call, ETH balance will be withdrawn from the vault yet again, and
deposited into the minipool to complete its funding. The ETH initially withdrawn by depostiWithCredit() will not beused and will remain locked in the RocketNodeDeposit contract.

Recommendations

Modify implementation of _processNodeDeposit() to cater for situations where msg.value could be zero, if the node
has been preloadedwith a sufficient balance. Also, do not assume that msg.value will be 8 or 16 ETH, as balanceToUse

now also needs to be considered when calling _deposit() on line [166].
Revisit the need of calling rocketVault.withdrawEther(balanceToUse); in depositWithCredit() , considering that re-
quired ETH is already being withdrawn from the vault via assignDeposits() call.

Page | 6

Rocket Pool – Houston Upgrade Detailed Findings

Resolution

The issue has been addressed in commit e2557ce by modifying the implementation of _processNodeDeposit() to no
longer rely on msg.value , but to use the contract balance instead.

Page | 7

https://github.com/rocket-pool/rocketpool/commit/e2557ce4ba2c0f6a330a5d8d42731ba3c62233c5

Rocket Pool – Houston Upgrade Detailed Findings

RPH-02 Challenges Can Be Manipulated Through Arbitrary Path Traversal To Steal Proposal Bond
Asset RocketDAOProtocolVerifier.sol

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

Due to errors in the computeRootFromWitness() function, users can craft specific challenges that will place valid pro-posals in a challenged state, where future challenges may not be contested, genuine proposals are blocked from votingand, subsequently, leading to the proposal bond being stolen.
The RocketDAOProtocolVerifier.sol contract is responsible for ensuring that proposal creations, votes and vetoes canonly happen by users meeting relevant requirements. When a proposal is created, the proposer submits a Merklepollard containing an aggregated voting power sum along with a proposal bond. Proposals can be challenged by anyregistered node prior to voting and winning challenges claim the proposal bond.
Proposals contain two Merkle trees combined by way of pollards. Both trees contain a power of two multiple of thenumber of RocketPool nodes. The first tree is the Network Voting Tree containing an aggregated voting sum of eachnode in the network. The second tree, which extends from the leaf nodes in the first tree, contains the delegate votingpower assigned to each account by the node index in the first tree.
When a user submits a proposal, they provide a Merkle pollard for the Network Voting Tree with a maximum depth of5. Challengers are then able to contest branches of this pollard by submitting an index they would like to challenge,along with a witness and leaf that hash to the root of the tree.
The function computeRootFromWitness() accepts an index, a leaf node and a witness, and produces a root hash. How-ever, it does not validate that the witness length matches the size expected for a given index depth. This allows amalicious party to submit a valid witness for a given leaf, but choose any index that follows the same path in order toproduce a matching hash.

Figure 1: Example of a Merkle tree with 32 Rocket Pool nodes.
Let’s consider an example above with 32 Rocket Pool nodes, this corresponds to a Network Voting Tree depth of 5.A challenger decides to challenge the proposal, providing the correct leaf node for index 15 along with the matchingwitness for index 14, 6 and 2. Under normal conditions if the challenger provided the index 15 as the actual challenge,

Page | 8

Rocket Pool – Houston Upgrade Detailed Findings

we would hash values 15 and 14 to receive 7, this is hashed with index 6 and then the result is hashed with index 2to calculate the root. If the calculated root matches the expected root, the challenge successfully updates the node tothe challenge index and sets the hash to the value contained in the leaf.
Consider a modification to the above example, a malicious user decides to challenge index 31 (the right hand side layerdown from index 15), provides the leaf for index 15, instead of 31, and provides the witness required for leaf index 15(ie indexes 14, 6 and 2). Since the witness is hashed against the leaf, until all witness values are exhausted, the hashfollows the same path from 15 to the root. This means the computed root for this malicious challenge index of 31 stillmatches the expected root hash value. This sets the root hash of the index 31 challenge to the value of the index 15.Since the hash no longer matches what the tree would expect for the index 31, the tree is now left in a challenged statethat is not able to be responded to. This subsequently leads to the loss of the proposal bond.

Recommendations

The testing team recommends the following fixes to computeRootFromWitness() :

• Validate that computeRootFromWitness() contains the required amount of witnesses for the relevant index depth
• Check that the _index value in computeRootFromWitness() at the end of the for loop is the same as the expectedroot node before returning, revert if it is more. For example, it would need to ensure that for the first pollard, itfinalises to an index 1 and revert if it is more.

Resolution

The issue has been addressed in commit 4857aff by adding a check that the proof length matches the depth of thechallenge.

Page | 9

https://github.com/rocket-pool/rocketpool/commit/4857afff18e625c0432d684e8ec9e8007c860b06

Rocket Pool – Houston Upgrade Detailed Findings

RPH-03 Upgraded Contracts Threaten Proposal Bond Liquidity
Asset RocketDAOProtocolProposal.sol, RocketDAOProtocolVerifier.sol
Status Closed: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

Proposals submitted and not finalised prior to a network upgrade, may result in locked funds of the proposers andchallengers.
RocketPool uses a centralised contract tomanage versions and implementation details for contracts within their ecosys-tem. Both the RocketDAOProtocolProposal and the RocketDAOProtocolVerifier contracts have access control mecha-nisms that ensure only the latest versions of those contracts will execute critical functions.
The following functions all have version based access control:

1. onlyLatestContract("rocketDAOProtocolProposal", address(this)) :
• RocketDAOProtocolProposal.vote()

• RocketDAOProtocolProposal.overrideVote()

• RocketDAOProtocolProposal.finalize()

• RocketDAOProtocolProposal.execute()

• RocketDAOProtocolProposal.destroy()

• RocketDAOProtocolProposal.vote()

2. onlyLatestContract("rocketDAOProtocolVerifier", address(msg.sender)) :
• RocketDAOProtocolProposal.destroy()

3. onlyLatestContract("rocketDAOProtocolVerifier", address(this)) :
• RocketDAOProtocolVerifier.submitProposalRoot()

• RocketDAOProtocolVerifier.burnProposalBond()

• RocketDAOProtocolVerifier.createChallenge()

• RocketDAOProtocolVerifier.defeatProposal()

• RocketDAOProtocolVerifier.claimBondChallenger()

• RocketDAOProtocolVerifier.claimBondProposer()

• RocketDAOProtocolVerifier.submitRoot()

4. onlyLatestContract("rocketDAOProtocolProposal", address(msg.sender)) :
• RocketDAOProtocolVerifier.burnProposalBond()

Page | 10

Rocket Pool – Houston Upgrade Detailed Findings

It is possible to construe a scenario where the proposer is able to submit a proposal, a challenger canchallenge the proposal, and an upgrade is done to the RocketDAOProtocolVerifier contract. This meanssubsequent calls to RocketDAOProtocolVerifier.submitRoot() , RocketDAOProtocolVerifier.defeatProposal() ,
RocketDAOProtocolVerifier.claimBondChallenger() , RocketDAOProtocolVerifier.claimBondProposer() , will all re-vert.
As a result, a proposal on an outdated contract may have a proposal bond that is unrecoverable since neither challengeror proposer can finalise the the status of the proposal by either executing it or defeating it, and there is noway to removebonds after upgrade.
Upgrade scripts do not currently check if there are any pending DAO proposals, and doing so would open the op-portunity for upgrades to be denied by creating throwaway proposals (though we grant that this would be a costlyattack).

Recommendations

To avoid having to check whether there are existing DAO proposals, which may open up the opportunity for upgradedenial of service, the testing team advises on providing some functionality where users can retrieve their proposal bondafter upgrades have been finalised.

Resolution

The finding has been acknowledged by the RocketPool team with the following comment:

"As we are in control of upgrades at this time, we can ensure any upgrades are backwards compatible with the
bond system. Therefore, it does not pose a current threat."

Page | 11

Rocket Pool – Houston Upgrade Detailed Findings

RPH-04 Incorrect Offset When Setting periodsPaid

Asset RocketClaimDAO.sol

Status Resolved: See Resolution
Rating Severity: High Impact: Medium Likelihood: High

Description

Incorrect offset is referenced when setting periodsPaid variable in the storage.
// Update last paid timestamp and periods paid
setUint(bytes32(contractKey + lastPaymentOffset), lastPaymentTime + (periodsToPay * periodLength));
setUint(bytes32(contractKey + periodsPaid), periodsPaid + periodsToPay); // @audit should be `+ periodsPaidOffset`

As a result, an exists variablewill be overwritten instead, as periodsPaid will be zero to beginwith and existsOfssetis also zero.
This could have significant implications to follow, as it will mark and effectively render the contract non-existent.

Recommendations

Modify code on line [182] to reference the correct offset, i.e. bytes32(contractKey + periodsPaidOffset) .

Resolution

The issue has been addressed in commit 3d1d634 as per the recommendations.

Page | 12

https://github.com/rocket-pool/rocketpool/commit/3d1d634669cc8642dc77888104d8440eec0ca990

Rocket Pool – Houston Upgrade Detailed Findings

RPH-05 Incorrect Computation Of claimIntervalsPassed
Asset RocketRewardsPool.sol

Status Resolved: See Resolution
Rating Severity: High Impact: Medium Likelihood: High

Description

Intervals since last claim period are incorrectly computed.
Currently, the interval start time is divided by claim interval duration, and subtracted from current block timestamp:
return block.timestamp - (getClaimIntervalTimeStart() / getClaimIntervalTime())

However, it should actually be the difference between current block’s timestamp and claim interval start, divided bythe interval duration.

Recommendations

Modify code on line [79] to correctly calculate intervals since last claim period, i.e.
return (block.timestamp - getClaimIntervalTimeStart()) / getClaimIntervalTime()

Resolution

The issue has been addressed in commit f8a658c as per the recommendations.

Page | 13

https://github.com/rocket-pool/rocketpool/commit/f8a658c679819ca9e40caccf886a89bda9fea234

Rocket Pool – Houston Upgrade Detailed Findings

RPH-06 Incorrect RPL Stake Calculation During Withdrawal
Asset RocketNodeStaking.sol

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

Check on line [415] does not take into account amount of locked RPL balance, which should not be accounted for inthe total withdrawable balance:
uint256 rplStake = getNodeRPLStake(msg.sender);
uint256 lockedStake = getNodeRPLLocked(msg.sender);
require(rplStake >= _amount, "Withdrawal amount exceeds node's staked RPL balance");

This could result in more RPL being withdrawn than allowed to.

Recommendations

Modify implementation to account for locked RPL stake, e.g.:
require(rplStake - lockedStake >= _amount);

Resolution

The issue has been addressed in commit 85bede4 as per the recommendations.

Page | 14

https://github.com/rocket-pool/rocketpool/commit/85bede48dfdcaaf33ac4eaf6f216b70b97356124

Rocket Pool – Houston Upgrade Detailed Findings

RPH-07 Behavioural Inconsistencies In Protocol Settings Initialisation Code
Asset RocketDAOProtocolSettings*.sol, RocketUpgradeOneDotThree.sol
Status Closed: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

Upgrades may not be able to complete successfully.
Each DAO type in the RocketPool network maintains a separate settings contract that determines various configurableoptions for the DAO proposal and actions contracts. Any new contracts for the RocketPool network are deployed andadded to the network through an upgrade contract. Most of the contracts that make up the DAO Protocol Settingshave constructors that require updating RocketStorage key and value pairs. This requires being added to the network’s"allowed contracts", which typically happens during the upgrade itself.
Due to this behavioural inconsistency, the upgrade will require external contracts that run before the upgrade, whichcan predict the expected address, and then deploy the protocol settings after the upgrade. However, input into theupgrade contract is typically DAO controlled.
This could lead to a scenario where the upgrade is unable to proceed successfully.
The full list of affected contracts are:

• RocketDAOProtocolSettingsAuction

• RocketDAOProtocolSettingsDeposit

• RocketDAOProtocolSettingsInflation

• RocketDAOProtocolSettingsMinipool

• RocketDAOProtocolSettingsNetwork

• RocketDAOProtocolSettingsNode

• RocketDAOProtocolSettingsProposal

• RocketDAOProtocolSettingsRewards

• RocketDAOProtocolSettingsSecurity

On line [177-185] of the RocketUpgradeOneDotThree contract we can see how new contracts are added to RocketStorage.Furthermore, we can see the following code in the constructor of the RocketDAOProtocolSettingsProposal contract;
constructor(RocketStorageInterface _rocketStorageAddress) RocketDAOProtocolSettings(_rocketStorageAddress, "proposals") {

version = 1;
// Initialize settings on deployment
if(!getBool(keccak256(abi.encodePacked(settingNameSpace, "deployed")))) {

// Init settings
setSettingUint("proposal.vote.phase1.time", 2 weeks); // How long a proposal can be voted on in phase 1

The function setSettingsUint() will call setUint() which updates RocketStorage. However, this is only possible ifthe contract is added to the RocketStorage to begin with.
Page | 15

Rocket Pool – Houston Upgrade Detailed Findings

Recommendations

A possible workaround is using create2 opcode to predict the address of the DAO protocol settings contracts, addthose during the upgrade, then deploy. We believe this workaround to be complex, unnecessary and potentially unde-sired by the development team.
Alternatively, place the constructor logic in initialise() function, which is called once after the contracts are addedto RocketStorage.

Resolution

The RocketPool team has acknowledged the issue with the following comment:

"We are aware of this situation and work around it by executing initialisation code in the upgrade contract."

Page | 16

Rocket Pool – Houston Upgrade Detailed Findings

RPH-08 Incorrect stake.for.allowed Value
Asset RocketNodeStaking.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

Incorrect node address is recorded as allowed to be staked for, which may result in unexpected and unintended results.
On line [305] the address to allow staking for is set as the caller of the function msg.sender , however, it should be a
_nodeAddress , as the call may not necessarily come from the node itself, but it may also be a node’s RPL withdrawaladdress:
setBool(keccak256(abi.encodePacked("node.stake.for.allowed", msg.sender, _caller)), _allowed);

Recommendations

Modify the implementation to record node.stake.for.allowed based on node address, e.g.:
setBool(keccak256(abi.encodePacked("node.stake.for.allowed", _nodeAddress, _caller)), _allowed);

Resolution

The issue has been addressed in commit d67fe0c as per the recommendations.

Page | 17

https://github.com/rocket-pool/rocketpool/commit/d67fe0c6ff9fec5a7c7b3a952204ce6b456f23fd

Rocket Pool – Houston Upgrade Detailed Findings

RPH-09 Challenged Leaf Indices Can Be Left Unverified Onchain
Asset RocketDAOProtocolVerifier.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: High Likelihood: Low

Description

Leaf node data is not verified onchain for Merkle depths of 5 or less during challenges on leaf nodes.
During proposal challenges, a proposer is required to respond to a challenger by providing nodes for the next Merklepollard. Intended behaviour is to continue this round by round challenging until we get to leaf nodes correspondingto actual Rocket Pool nodes, at which point the data is then checked onchain. However, actual behaviour differs fromthis, and leaf node data is not verified onchain.
The following code block in the function submitRoot() is responsible for verifying leaf nodes and setting the challengeto responded:
if (indexDepth == treeDepth) {

bytes32 actualHash = keccak256(abi.encodePacked(actual.sum));
require(expected.hash == actualHash, "Invalid hash");
setNode(_proposalID, _index, actual);

} else {
require(expected.hash == actual.hash, "Invalid hash");
if (indexDepth + depthPerRound >= treeDepth * 2) {

uint256 n = getNextDepth(_index, nodeCount) - indexDepth;
uint256 offset = (_index * (2 ** n)) - (2 ** (treeDepth * 2));
require(verifyLeaves(getUint(bytes32(proposalKey + blockNumberOffset)), nodeCount, offset, _nodes), "Invalid leaves");

}
}

As can be seen in this code block, leaves are only verified when indexDepth + depthPerRound >= treeDepth * 2 issatisfied. In order to better understand our bounds and how index and tree depth relate to one another:
1. indexDepth cannot be greater than treeDepth as challenges cannot exceed the final leaf height. That means

indexDepth <= treeDepth .
2. assuming the largest case, indexDepth == treeDepth , and codedepthPerRound = 5 this results in

2*indexDepth - indexDepth <= 5 .

The only situation that can lead to a truthful condition scenario is when indexDepth <= 5 . Meaning it is only true whenthe index depth of the challenge is at most the final height of the first pollard (assuming the tree depth is one pollard).This restriction limits the likelihood of the attack to low as the real world case of the Network Voting Tree is that it willhave far more than one pollard worth
Furthermore we can deduce from the above block that the responses to challenges (which occur when setNode()
function is called) will only be noted when indexDepth == treeDepth . This condition can be simplified to
Math.log2(nodeCount, Math.Rounding.Up) == Math.log2(_index, Math.Rounding.Down); . This will only occur if theindex of the challenge is a leaf node.
These two scenarios combined produce the following unintended behavioural outcomes:

Page | 18

Rocket Pool – Houston Upgrade Detailed Findings

1. if the index of a challenge is a leaf node, the challenge will be marked as responded, whilst no verification isconducted
2. Merkle pollards of pollard length larger than 1 will not verify leaf indices onchain

Recommendations

The testing team recommends ensuring that leaf index challenges are also verified onchain.

Resolution

The issue has been addressed in commit 2cbf3e1 bymoving the verification branch outside the parent condition branchso that verification occurs when the network tree is 5 layers or less deep.

Page | 19

https://github.com/rocket-pool/rocketpool/commit/2cbf3e1807d83785f45579ea7915335d23fd8097

Rocket Pool – Houston Upgrade Detailed Findings

RPH-10 Challengers Can Contest Non-Existent Indices To Steal Proposal Bond
Asset RocketDAOProtocolVerifier.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: High Likelihood: Low

Description

Due to errors in the getPollardRootIndex() function, users are able to create challenges for indices that exceed theNetwork Voting Tree length under specific conditions. This issue allows users to directly challenge indices they shouldnot be able to contest, which could lead to lost proposal bonds for valid proposals.
When calculating the pollardRootIndex of an index for a Merkle pollard with depth less than 5, the pollard root indexwill return 1 for all indices of depth at least 5. If we consider a case with 8 nodes, an index depth of 31 will return apollard root index of 1. However, this exceeds the max depth of our Network Voting Tree’s Merkle pollard. The correctresponse would be a revert.
If the challenger can provide a valid witness for this non existent node, the challenge hash will be updated to the 31stindex. This will result in a challenge that cannot be responded to.
Note, this issue is only applicable to trees with less than 32 indices, hence a low likelihood of exploitation as there is asignificant number of Rocket Pool nodes on the network already.

Recommendations

The testing team recommends reverting if the index depth exceeds the maxDepth of the Network Voting Tree. Thiscould be achieved as follows:
// Index is within the first pollard depth
if (_index < 2 ** depthPerRound) {

if(_index > maxDepth) {
revert("index exceeds network tree");

}

return 1;
}

Resolution

The issue has been addressed in commit 60684a7 as per the recommendations.
The RocketPool has also provided the following comment:

"This also highlighted another unintentional behaviour. A challenge could be made at any of the first 5 depths of
either the network tree or a node tree. This has been corrected so that only indices that are in depths of multiples
of 5 can be challenged. This was the intended behaviour previously but was misimplemented. This improved
getPollardRootIndex() also makes it impossible to submit a challenge depper than the maximum depth of the tree
as was intended.".

Page | 20

https://github.com/rocket-pool/rocketpool/commit/60684a7f0366a4233164a4d264b70991cc3cd86f

Rocket Pool – Houston Upgrade Detailed Findings

RPH-11 Implementation Discrepancies With RPIP Specifications
Asset RocketMerkleDistributorMainnet.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Medium

Description

The following implementation discrepancies with the RPIP specifications were observed:

• From RPIP-31 - "As the controller of the RPL for a node, I MUST be able to trigger a claim of RPL rewards and restake
a portion. If a node’s RPL withdrawal address is set, the call MUST come from the current RPL withdrawal address".
However, based on implementation of claimAndStake() on line [76] from RocketMerkleDistributorMainnet, itcurrently allows for the call to come from one of: the node’s primary withdrawal address, node’s address, or RPLwithdrawal address:
require(msg.sender == _nodeAddress || msg.sender == withdrawalAddress || msg.sender == rplWithdrawalAddress, "Can only claim

from node or withdrawal addresses");↪→

• From RPIP-33 - some fixed values from the parameter table do not match:
– line [49] from RocketDAOProtocolSettingsInflation - rpl.inflation.interval.rate should be > 1

– line [32] from RocketDAOProtocolSettingsSecurity - _value should be < 0.75

– line [46] from RocketDAOProtocolSettingsNetwork - network.submit.balances.frequency should be
> 1 hours

Recommendations

Modify identified implementations to align with RPIP specs, or clearly document implementation specifics and noteany deviations from proposed RPIPs.

Resolution

The issue for RPIP-31 has been addressed in commit a747457.
For RPIP-33, the RocketPool team provided the following comment:

"The RPIP-33 values are correct in code and need to be updated in the RPIP."

Page | 21

https://rpips.rocketpool.net/RPIPs/RPIP-31
https://rpips.rocketpool.net/RPIPs/RPIP-33
https://github.com/rocket-pool/rocketpool/commit/a747457fc610aa889af0a13cff5d3d00955525a5

Rocket Pool – Houston Upgrade Detailed Findings

RPH-12 Implementation Discrepancies With RPIP Specifications
Asset RocketMerkleDistributorMainnet.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Medium

Description

The following implementation discrepancies with the RPIP specifications were observed:

• From RPIP-31 - "As the controller of the RPL for a node, I MUST be able to trigger a claim of RPL rewards and restake
a portion. If a node’s RPL withdrawal address is set, the call MUST come from the current RPL withdrawal address".
However, based on implementation of claimAndStake() on line [76] from RocketMerkleDistributorMainnet, itcurrently allows for the call to come from one of: the node’s primary withdrawal address, node’s address, or RPLwithdrawal address:
require(msg.sender == _nodeAddress || msg.sender == withdrawalAddress || msg.sender == rplWithdrawalAddress, "Can only claim

from node or withdrawal addresses");↪→

• From RPIP-33 - some fixed values from the parameter table do not match:
– line [49] from RocketDAOProtocolSettingsInflation - rpl.inflation.interval.rate should be > 1

– line [32] from RocketDAOProtocolSettingsSecurity - _value should be < 0.75

– line [46] from RocketDAOProtocolSettingsNetwork - network.submit.balances.frequency should be
> 1 hours

Recommendations

Modify identified implementations to align with RPIP specs, or clearly document implementation specifics and noteany deviations from proposed RPIPs.

Resolution

The issue for RPIP-31 has been addressed in commit a747457.
For RPIP-33, the RocketPool team provided the following comment:

"The RPIP-33 values are correct in code and need to be updated in the RPIP."

Page | 22

https://rpips.rocketpool.net/RPIPs/RPIP-31
https://rpips.rocketpool.net/RPIPs/RPIP-33
https://github.com/rocket-pool/rocketpool/commit/a747457fc610aa889af0a13cff5d3d00955525a5

Rocket Pool – Houston Upgrade Detailed Findings

RPH-13 No Checks For Pending Withdrawal Addresses
Asset RocketStorage.sol

Status Closed: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

When setting a new withdrawal address, there are no checks to see if there are any pending withdrawal addresses inthe queue.
This could result in the address that was just set being overwritten, if there are any old pendingWithdrawalAddressesthat are accepted later on.

Recommendations

When setting a new withdrawal address, perform a check to see if there are any pending withdrawal addresses in thequeue, and either reject the update, or clear the pending address queue after setting the withdrawal address.

Resolution

The RocketPool team has acknowledged the issue and responded with the following comment:

"Known issue. Cannot be fixed as RocketStorage is unupgradable.".

Page | 23

Rocket Pool – Houston Upgrade Detailed Findings

RPH-14 Snapshot Amendments May Lead To Leaf Verification Failures
Asset RocketNetworkSnapshots.sol

Status Open

Rating Severity: Low Impact: Medium Likelihood: Low

Description

The function verifyLeaves() may incorrectly return false if rocketNetworkVoting.getVotingPower() calculates a
different maxStakePercent between proposal creation and leaf verification. If this occurs, a valid leaf may return falsewhen a new root is submitted. This will cause leaf verification to also return false , preventing challenges from beingcontested, leading to a loss of proposal bond.
To reduce the risk of differences in maxStakePercent , RocketPool creates a snapshot of the
node.per.minipool.stake.maximum value for a specific block.number to calculate maximumStake and producethe same expected value per staker for that specific proposal.
The RocketNetworkSnapshots contract uses a binary search algorithm to retrieve these snapshot key values for blockswithin a defined upper limit. Amendments are currently possible by pushing updates to the snapshots for a specific keywhere the block matches a previous snapshot. This is illustrated in the following code block:
// Update or push new checkpoint
if (last._block == _block) {

last._value = _value;
_set(_key, pos - 1, last);

} else {
_push(_key, Checkpoint224({_block: _block, _value: _value}));

}

Based on the above, amendments are possible as long as last._block == _block . It is worth noting that although
network voting ETH staked snapshots might be updated regularly, the node.per.minipool.stake.maximum is updatedinfrequently. This increases the chance that an old snapshot is overwritten, what may affect a current proposal fromsuccessfully running verifyLeaves() function.

Recommendations

Consider setting used block to block.number in the _insert() function of the RocketNetworkSnapshots contract.
Alternatively, a revert could be triggered when existing blocks are used for new snapshots. It is important to considerthese changes holistically according to the entirety of use cases supported by RocketNetworkSnapshots before imple-menting changes. Though these fixes aim to improve the security posture of the pDao, they may introduce issues inareas outside of the scope of this review.
If other parts of the system expect to be capable of amending previous block snapshots for certain keys, it is advisedto create a separate snapshot functionality for the node.per.minipool.stake.maximum .

Page | 24

Rocket Pool – Houston Upgrade Detailed Findings

RPH-15 Initial Votes Can Be Cast In Phase 2 Without Proof
Asset RocketDAOProtocolProposal.sol

Status Closed: See Resolution
Rating Informational

Description

Voters, who did not cast their vote in phase one, can still do so in phase two via overrideVote() function, which alsodoes not require them to provide a Merkle proof.
By design, as per RPIP-33, in the first voting phase, voting delegates, and node operators who have not delegated, cancast their vote by providing a Merkle proof of their voting power (relative to the submitted proposal root). Once thefirst phase has passed, voting enters the second voting phase. Node operators who have delegated their vote, get theopportunity to override their delegate’s vote, if they disagree.
However, there are no checks preventing voterswho did not cast their vote in phase one, andwho do not have delegatesset, or whose delegates have not voted in phase 1, from calling overrideVote() to cast their vote.
As a result, voters who did not vote during phase one, can still cast their votes without needing to provide a Merkleproof in phase two.

Recommendations

Modify implementation of overrideVote() to prevent voters without delegates set, or with delegates who did notvote in phase one, from calling the function.

Resolution

This finding has been closed as false-positive with the following comment from the RocketPool team:

"This is intentional behaviour. For regular users that do not have any delegated voting power and have not del-
egated their vote, they can either vote in phase 1 with a proof or wait until phase 2 and vote without having to
provide a proof. The outcome is identical. Phase 1 is primarily for delegates to vote with the sum of their delegated
power and requires the Merkle tree to prove this sum. For nodes voting on their own, it is unnecessary to produce
the Merkle tree as their own voting power is known on chain without any extra proof required. By default, all
nodes are delegated to themselves. So their voting power and their delegated voting power are equal. Hence,
whether voting in phase 1 or 2, the outcome is the same."

Page | 25

https://rpips.rocketpool.net/RPIPs/RPIP-33

Rocket Pool – Houston Upgrade Detailed Findings

RPH-16 Node’s Votes Can Be Overridden Without Its Knowledge
Asset RocketDAOProtocolProposal.sol

Status Closed: See Resolution
Rating Informational

Description

Any node’s votes can be arbitrarily overridden during phase two without node’s prior knowledge or approval.
A node can forcefully nominate any address as a delegate via setDelegate() . There is no mechanism in place for thenominated node to accept or reject this role. If a node (voter) nominates other existing node (delegate), it will be ableto override that delegate node’s original vote.
For example, consider the following scenario:

1. A forced delegate node votes for a certain proposal and has a voting power of 10
2. Total number of votes for the proposal is currently 20 (i.e. there were other 10 FOR votes casted by other nodes)and 5 AGAINST

3. Voter node that set the delegate from step 1 comes in and votes AGAINST the proposal. It’s voting power is also10
4. Delegate’s votes will be overridden by reducing total amount of FOR votes by voter’s voting power (10)
5. Voter’s vote will then be casted on top of it in phase two (assuming they didn’t vote in phase one)
6. In the end, total number of FOR votes is 10, and 15 AGAINST. The proposal is rejected with 10-15 votes.
7. The voter was able to overthrow the proposal, which otherwise would have passed with 20-15 votes.

Note, this issue may also have more implications where both nodes voting powers differ, particularly when nominatingnode’s voting power is larger than this of the delegated node. In such situations, the vote deduction during overridewill exceed delegated node’s vote count, and, as such, would result in deducting votes that were placed by other nodes.

Recommendations

Implement a 2-step mechanism to nominate, and then accept the delegate role. Only add an address as delegate if ithas explicitly accepted it.
Add extra control mechanisms to overrideVote() to ensure that delegate’s and node’s voting powers match, and only
number of votes casted by the delegate can be deducted, not the msg.sender total voting power.

Resolution

This finding has been closed as false-positive with the following comment from the RocketPool team:
Page | 26

Rocket Pool – Houston Upgrade Detailed Findings

"In phase 1, only nodes with delegated voting power can vote. So the "attacker" is unable to vote in phase 1 as
they have delegated all their power to the "forced delegate node". In the network Merkle sum tree, their voting
power is 0. In phase 1, the forced delegatee has 20 voting power (their own 10 and the 10 from the attacker).
Only in phase 2 can the attacker override their delegatee’s voting power. At this point the delegatee has applied
20 voting power to FOR. So overriding that with an AGAINST vote will result in 10 FOR votes and 10 AGAINST
votes."

Page | 27

Rocket Pool – Houston Upgrade Detailed Findings

RPH-17 Delegates Are Unable To Vote
Asset RocketDAOProtocolProposal.sol, RocketDAOProtocolVerifier.sol
Status Closed: See Resolution
Rating Informational

Description

When submitting a vote as a delegate, the vote() function will always revert with "Invalid Node" as
rocketDAOProtocolVerifier.verifyVote() expects the call to always come from the node itself.
When submitting a vote during phase 1 via vote() , delegates are expected to be able to cast a vote on behalf of anode operator. However, the following call will always fail:
rocketDAOProtocolVerifier.verifyVote(msg.sender, _nodeIndex, _proposalID, _votingPower, _witness)

This is due to the following check in verifyVote() :
function verifyVote(address _voter, uint256 _nodeIndex, uint256 _proposalID, uint256 _votingPower, Types.Node[] calldata _witness)

external view returns (bool) {↪→

// ...(snip)...

// Verify voter
if(rocketNodeManager.getNodeAt(_nodeIndex) != _voter) {

return false;
}

If _voter is a delegate and not an original node, the voter verificationwill always fail. This is also due to setDelegate()
merely updating the storage variable node.delegate , which is then not checked for.

Recommendations

Modify implementation of verifyVote() to cater for situations where a call may come from a node’s delegate. This
could be done by checking if supplied _voter is node, or a node’s delegate, if set.

Resolution

The finding has been closed as false-positive with the following comment from the RocketPool team:

"Delegatees do not vote separately on behalf of each of their delegators. They place a single vote with the sum of
all their delegated voting power proved by the Merkle sum tree. Their leaf node in the network Merkle sum tree is
a summation of all nodes who have delegated to them."

Page | 28

Rocket Pool – Houston Upgrade Detailed Findings

RPH-18 Inadequate Merkle Height Verification
Asset RocketDAOProtocolVerifier.sol

Status Open

Rating Informational

Description

There is no explicit tree height verification for the requested index during verification of Merkle proofs.
The verifyVote() function is a critical code branch that validates if voters have the supplied voting power. A malicioususer may provide a merkle proof with a shortened witness due to lack of height verification for the requested index.
The verifyVote() function has several user supplied parameters - _votingPower , _witness and treeIndex . The
treeIndex and _witness.length are used as bounds for generating theMerkle root. If this root matches the expected,
the vote is considered verified. The computeRootFromWitness() function does not make any checks to ensure the
witness length matches what is expected for a given treeIndex .
Note, the issue does not appear to be directly exploitable, due to how the hashes are calculated for leaf nodes. Withthe leaf node hashes being different for intermediate nodes, a malicious user is only able to provide _votingPower forleaf nodes. As a result, modifications to the witness will not yield the expected merkle root.
Although indirect checks exist that protect against exploits, these checks are performed in different parts of the codeand could bemistakenly omitted, particularly when introducing new functionality and potential future contract updates.

Recommendations

Consider implementing additional checks in the computeRootFromWitness() function to ensure that witness length
matches the expected length for a specific treeIndex .

Page | 29

Rocket Pool – Houston Upgrade Detailed Findings

RPH-19 Miscellaneous General Comments
Asset contracts/*

Status Closed:

Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:
1. No checks if a node exists when retrieving its withdrawal address.

In RocketStorage contract, there are no checks to verify if a node exists when calling
getNodeWithdrawalAddress() . As a result, enquired address _nodeAddress will be returned, even when anode doesn’t exist.
Note, this is called by other upper level functions, such as RocketNodeManager.getNodePendingWithdrawalAddress() .

2. Incorrect event.
In RocketNodeDeposit, an incorrect event is emitted on line [113] - should be Withdrawal not DepositFor .

3. Inconsistent withdrawal address logic.
• In RocketNodeStaking, the withdrawRPL() function logic dictates that if a node’s RPL withdrawal address isunset, the call must come from the node’s primary withdrawal address, or the node’s address.

However, this is inconsistent with behaviour of withdrawEth() where it has to be the withdrawal address,if set, or node address, not either. This could lead to confusion if not documented correctly.
• In RocketNodeStaking, the stakeRPLFor() on line [272], consider if the ETH withdrawal address should alsobe accepted, if set.

4. Additional checks.
• In RocketNodeManager, the confirmRPLWithdrawalAddress() function could benefit from

onlyRegisteredNode modifier to ensure only calls on valid nodes are accepted.
• In RocketNodeStaking, the transferRPL() function should check if _from is a valid node and if it has a

sufficient balance to cover the _amount . A revert may occur later on otherwise during transfer, but thiswould save gas and return a user friendly error.
• In RocketNodeDeposit, the depositEthFor() function could benefit from checks to ensure that

msg.sender != _nodeAddress , i.e. the node is not depositing on behalf of itself - in such cases it should
just use deposit() instead.

• In RocketNodeDeposit, the depositWithCredit() function could benefit from an additional check and a clear
error message when _bondAmount < msg.value .

5. NatSpec improvements.

• In RocketNodeDeposit, NatSpec of depositWithCredit() is incomplete and appears to be a copy-paste of
deposit() .

• In RocketNodeDeposit, NatSpec of _processNodeDeposit() could be more detailed and explain various con-ditions and scenarios covered.
Page | 30

Rocket Pool – Houston Upgrade Detailed Findings

• In RocketDAOProtocolVerifier, NatSpec of createChallenge() is incomplete and missing details on input
parameters _node and _witness .

6. Gas savings.
• In RocketClaimDAO, consider adding require(periodsToPay > 0) after line [174], otherwise, calculations andupdates that follow will yield no result as periods paid would have already been exhausted.
• In RocketDAOProtocolSettingsInflation, checks on line [48] and line [49] can be moved higher up beforecalling inflationMintTokens() to avoid calling the function if an invalid value was provided.
• For loops, use postfix operations when incrementing i . Prefix ++i uses two less operations thereforesaving gas.

7. Lack of in-depth test coverage of DAO functionalities.
Insufficient test coverage of edge case scenarios, including complex Merkle trees and basic functionality (e.g.utilising delegates for voting) was observed.
It is recommended to ensure comprehensive unit tests aiming to achieve 100% test coverage and supplementaryfuzzing tests are developed.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The comments above have been acknowledged by the RocketPool team, and relevant changes actioned in the followingcommits:
1. 30702a1
2. b236759
3. 6ef00e5

Page | 31

https://github.com/rocket-pool/rocketpool/commit/30702a19da64f50e42e5cc8d098937df5eb0cbf8
https://github.com/rocket-pool/rocketpool/commit/b2367591ee081d007a0ecd730921638830004ba6
https://github.com/rocket-pool/rocketpool/commit/6ef00e58a7b44d246c1fb03031d01727af407c97

Rocket Pool – Houston Upgrade Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are given along with this document.The brownie framework was used to perform these tests and the output is given below.

Running 17 tests for test/Dao.t.sol:DaoTest
[PASS] testCreateChallengeForNonExistingProposal() (gas: 93526)
[FAIL. Reason: revert: Invalid hash] testCreateChallengeInvalidLeafNode() (gas: 1073050)
[PASS] testCreateChallengeNormalProposal() (gas: 1064526)
[PASS] testCreateInvalidChallengeIndexNotCorrespondingToWitness() (gas: 1037894)
[FAIL. Reason: call did not revert as expected] testCreateInvalidChallengeIndexOutOfBounds() (gas: 1038235)
[FAIL. Reason: revert: Invalid hash] testCreateInvalidChallengeWithResponse() (gas: 1064758)
[FAIL. Reason: revert: Block too old] testDelayedProposalPropose() (gas: 187648)
[PASS] testFuzzFirstPollardRootIndex(uint256,uint256) (runs: 1000, 9518, 9546)
[PASS] testFuzzSecondPollardRootIndex(uint256,uint256) (runs: 1000, 11300, 11449)
[PASS] testInvalidBurning() (gas: 797576)
[PASS] testOverrideNodeVote_PoC() (gas: 1240622)
[PASS] testPropose() (gas: 794518)
[PASS] testSigPMerkleImplementation() (gas: 95958)
[PASS] testSpecificPollardRootIndex() (gas: 7497)
[PASS] testVote() (gas: 1432846)
[FAIL. Reason: revert: Invalid node] testVoteAsDelegate() (gas: 854027)
[PASS] testVoteInPhase2_PoC() (gas: 988413)
Test result: FAILED. 12 passed; 5 failed; 0 skipped; finished in 102.73ms

Running 2 tests for test/Merkle.t.sol:MerkleTest
[PASS] testGetDepthFromIndex(uint256,uint256) (runs: 1000, 8301, 8434)
[PASS] testGetMaxDepth(uint256) (runs: 1000, 5591, 5733)
Test result: ok. 2 passed; 0 failed; 0 skipped; finished in 112.93ms

Running 5 tests for test/forking/ForkTest.sanity.t.sol:ForkSanityTest
[PASS] test_Deposit_HardcodedAddressMatchesStorage() (gas: 8295)
[PASS] test_RETH_HardcodedAddressMatchesStorage() (gas: 8268)
[PASS] test_RPL_HardcodedAddressMatchesStorage() (gas: 8245)
[PASS] test_Storage_IsInitialised() (gas: 7746)
[PASS] test_Storage_getGuardian_exists() (gas: 7740)
Test result: ok. 5 passed; 0 failed; 0 skipped; finished in 4.14s

Running 1 test for test/forking/RocketUpgradeOneDotThree.t.sol:UpgradeVersionTest
[FAIL. Reason: assertion failed] test_BugPOC_UpgradedContractVersionsHaveIncremented() (gas: 88132914)
Test result: FAILED. 0 passed; 1 failed; 0 skipped; finished in 234.52s

Running 5 tests for test/forking/RocketUpgradeOneDotThree.t.sol:UpgradeTest
[FAIL. Reason: revert: Invalid or outdated network contract] test_BugPOC_DeployRocketDAOProtocolSettingsProposals() (gas: 95352)
[FAIL. Reason: revert: Invalid or outdated network contract] test_BugPOC_DeployRocketDAOProtocolSettingsSecurity() (gas: 95843)
[FAIL. Reason: revert: Invalid or outdated network contract] test_BugPOC_DeployUpgradeContracts() (gas: 41594766)
[PASS] test_Workaround_DeployNewSettingsContracts() (gas: 2503798)
[PASS] test_Workaround_HoustonUpgrade() (gas: 87964691)
Test result: FAILED. 2 passed; 3 failed; 0 skipped; finished in 234.52s

Running 1 test for test/forking/UpgradedForkTest.sanity.t.sol:NewContractsNotYetRegisteredTest
[PASS] test_HoustonContractsNewlyRegistered() (gas: 89362)
Test result: ok. 1 passed; 0 failed; 0 skipped; finished in 234.53s

Running 1 test for test/forking/ForkTest.sanity.t.sol:NewContractsNotYetRegisteredTest
[PASS] test_HoustonContractsNotYetRegistered() (gas: 41315)
Test result: ok. 1 passed; 0 failed; 0 skipped; finished in 234.54s

Running 16 tests for test/forking/UpgradedForkTest.sanity.t.sol:UpgradedProtocolVersionTest
[PASS] test_RocketClaimDAO_VersionAsExpected() (gas: 13515)
[PASS] test_RocketDAOProtocolProposals_VersionAsExpected() (gas: 13534)
[PASS] test_RocketDAOProtocolSettingsAuction_VersionAsExpected() (gas: 13590)
[PASS] test_RocketDAOProtocolSettingsDeposit_VersionAsExpected() (gas: 13569)
[PASS] test_RocketDAOProtocolSettingsInflation_VersionAsExpected() (gas: 13624)
[PASS] test_RocketDAOProtocolSettingsMinipool_VersionAsExpected() (gas: 13648)
[PASS] test_RocketDAOProtocolSettingsNetwork_VersionAsExpected() (gas: 13613)

Page | 32

Rocket Pool – Houston Upgrade Test Suite

[PASS] test_RocketDAOProtocolSettingsRewards_VersionAsExpected() (gas: 13613)
[PASS] test_RocketDAOProtocol_VersionAsExpected() (gas: 13568)
[PASS] test_RocketMinipoolManager_VersionAsExpected() (gas: 13658)
[PASS] test_RocketNetworkBalances_VersionAsExpected() (gas: 13492)
[PASS] test_RocketNetworkPrices_VersionAsExpected() (gas: 13525)
[PASS] test_RocketNodeDeposit_VersionAsExpected() (gas: 13547)
[PASS] test_RocketNodeManager_VersionAsExpected() (gas: 13635)
[PASS] test_RocketNodeStaking_VersionAsExpected() (gas: 13658)
[PASS] test_RocketRewardsPool_VersionAsExpected() (gas: 13591)
Test result: ok. 16 passed; 0 failed; 0 skipped; finished in 234.53s

Running 16 tests for test/forking/ForkTest.sanity.t.sol:ProtocolVersionTest
[FAIL. Reason: assertion failed] test_BugPOC_RocketDAOProtocolSettingsMinipool_VersionAsExpected() (gas: 32724)
[FAIL. Reason: assertion failed] test_BugPOC_RocketNetworkBalances_VersionAsExpected() (gas: 32599)
[FAIL. Reason: assertion failed] test_BugPOC_RocketRewardsPool_VersionAsExpected() (gas: 32751)
[PASS] test_RocketClaimDAO_VersionAsExpected() (gas: 13481)
[PASS] test_RocketDAOProtocolProposals_VersionAsExpected() (gas: 13502)
[PASS] test_RocketDAOProtocolSettingsAuction_VersionAsExpected() (gas: 13558)
[PASS] test_RocketDAOProtocolSettingsDeposit_VersionAsExpected() (gas: 13470)
[PASS] test_RocketDAOProtocolSettingsInflation_VersionAsExpected() (gas: 13547)
[PASS] test_RocketDAOProtocolSettingsNetwork_VersionAsExpected() (gas: 13536)
[PASS] test_RocketDAOProtocolSettingsRewards_VersionAsExpected() (gas: 13514)
[PASS] test_RocketDAOProtocol_VersionAsExpected() (gas: 13480)
[PASS] test_RocketMinipoolManager_VersionAsExpected() (gas: 13614)
[PASS] test_RocketNetworkPrices_VersionAsExpected() (gas: 13513)
[PASS] test_RocketNodeDeposit_VersionAsExpected() (gas: 13536)
[PASS] test_RocketNodeManager_VersionAsExpected() (gas: 13547)
[PASS] test_RocketNodeStaking_VersionAsExpected() (gas: 13537)
Test result: FAILED. 13 passed; 3 failed; 0 skipped; finished in 234.54s

Ran 9 test suites: 52 tests passed, 12 failed, 0 skipped (64 total tests)

Failing tests:
Encountered 5 failing tests in test/Dao.t.sol:DaoTest
[FAIL. Reason: revert: Invalid hash] testCreateChallengeInvalidLeafNode() (gas: 1073050)
[FAIL. Reason: call did not revert as expected] testCreateInvalidChallengeIndexOutOfBounds() (gas: 1038235)
[FAIL. Reason: revert: Invalid hash] testCreateInvalidChallengeWithResponse() (gas: 1064758)
[FAIL. Reason: revert: Block too old] testDelayedProposalPropose() (gas: 187648)
[FAIL. Reason: revert: Invalid node] testVoteAsDelegate() (gas: 854027)

Encountered 3 failing tests in test/forking/ForkTest.sanity.t.sol:ProtocolVersionTest
[FAIL. Reason: assertion failed] test_BugPOC_RocketDAOProtocolSettingsMinipool_VersionAsExpected() (gas: 32724)
[FAIL. Reason: assertion failed] test_BugPOC_RocketNetworkBalances_VersionAsExpected() (gas: 32599)
[FAIL. Reason: assertion failed] test_BugPOC_RocketRewardsPool_VersionAsExpected() (gas: 32751)

Encountered 3 failing tests in test/forking/RocketUpgradeOneDotThree.t.sol:UpgradeTest
[FAIL. Reason: revert: Invalid or outdated network contract] test_BugPOC_DeployRocketDAOProtocolSettingsProposals() (gas: 95352)
[FAIL. Reason: revert: Invalid or outdated network contract] test_BugPOC_DeployRocketDAOProtocolSettingsSecurity() (gas: 95843)
[FAIL. Reason: revert: Invalid or outdated network contract] test_BugPOC_DeployUpgradeContracts() (gas: 41594766)

Encountered 1 failing test in test/forking/RocketUpgradeOneDotThree.t.sol:UpgradeVersionTest
[FAIL. Reason: assertion failed] test_BugPOC_UpgradedContractVersionsHaveIncremented() (gas: 88132914)

Page | 33

Rocket Pool – Houston Upgrade Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.html. [Ac-cessed 2018].
[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].

Page | 34

https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	ETH Locked In RocketNodeDeposit Contract
	Challenges Can Be Manipulated Through Arbitrary Path Traversal To Steal Proposal Bond
	Upgraded Contracts Threaten Proposal Bond Liquidity
	Incorrect Offset When Setting periodsPaid
	Incorrect Computation Of claimIntervalsPassed
	Incorrect RPL Stake Calculation During Withdrawal
	Behavioural Inconsistencies In Protocol Settings Initialisation Code
	Incorrect stake.for.allowed Value
	Challenged Leaf Indices Can Be Left Unverified Onchain
	Challengers Can Contest Non-Existent Indices To Steal Proposal Bond
	Implementation Discrepancies With RPIP Specifications
	Implementation Discrepancies With RPIP Specifications
	No Checks For Pending Withdrawal Addresses
	Snapshot Amendments May Lead To Leaf Verification Failures
	Initial Votes Can Be Cast In Phase 2 Without Proof
	Node's Votes Can Be Overridden Without Its Knowledge
	Delegates Are Unable To Vote
	Inadequate Merkle Height Verification
	Miscellaneous General Comments

	Test Suite
	Vulnerability Severity Classification

