
Rocket Pool

Rocket Pool Protocol
Atlas Update Contract Review

Version: 1.0

December, 2022

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 4Findings Summary . 4
Detailed Findings 5

Summary of Findings 6Lightweight Minipool Initialisation Allows Theft of Operator Refund and State Corruption 7Node Operators Can Claim RPL Stake Without Running A Node 8Malicious Actors Can Prevent Non-Owner Distributions . 9Node Operators ETH Can Be Mistakenly Sent To The Deposit Pool 10Distinction Of Partial/Full Withdrawals Is Not Guaranteed . 11Poorly Performing Validators . 11Highly Performing Validators or Long Delay Between Partial Withdrawals 11Missing Guards Preventing Direct Initialisation of Minipool Base Contract 13Minipool preDeposit Submits Entire Contract Balance . 14Non-Owners May Continually Distribute Balances . 15Recommendations . 15The RocketMinipoolProxy Could Be Made Lighter . 16Miscellaneous General Comments . 17
A Vulnerability Severity Classification 19

1

Rocket Pool Protocol Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Rocket Pool smart con-tracts. The review focused solely on the security aspects of the Solidity implementation of the contract, thoughgeneral recommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the Rocket Pool smart contracts contained withinthe scope of the security review. A summary followed by a detailed review of the discovered vulnerabilitiesis then given which assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an
open/closed/resolved status and a recommendation. Additionally, findings which do not have direct security im-plications (but are potentially of interest) are marked as informational.
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Rocket Pool smart contracts.

Overview

Rocket Pool is a decentralised staking network focused on the Ethereum consensus beacon chain. This reviewis focused on a proposed major update to the protocol, entitled “Atlas”; in particular, focusing on affected smartcontracts.
This “Atlas” update is the first major update to Rocket Pool following the Ethereum network’s upgrade to proofof stake (POS) consensus via a “merge” of the consensus and execution layers. This update is also in responseto the current mainnet environment, in which the user demand for rETH outpaces growth in node operator’sability to supply “Minipool” validators (with current collateralisation requirements).

Page | 2

Rocket Pool Protocol Overview

Key features of this update include:
• Introduction of “Lower ETH Bonded” minipools with an 8 ETH collateralisation requirement (LEB8s) —Node operators can choose to create new minipools backed by either 8 or 16 ETH collateral.
• A LEB8 migration mechanism — Allowing node operators to convert existing 16 ETH collateral minipoolsinto a LEB8, with the protocol allocating deposited funds for credit towards collateral for a new minipool.
• Support for partial validator withdrawals — As part of an upcoming Ethereum hard-fork, validators willregularly see any balance in excess of 32 ETHwithdrawn to their nominated EVM address. This introducessupport for early partial withdrawals to the minipool contracts.
• Using minipool deposit queue ETH — Use of ETH deposited by node operators to progress the depositpool and more quickly activate those at the head of queue.
• Include queue capacity in maximum deposit size — Allowing single large user deposits to exceed the pre-vious deposit pool maximum, if there are sufficient pending minipools to hold the excess.
• Reducedminipool contract deployment costs —Newminipool contracts are created with a two-part proxystructure. The deployedminipool is a lightweight, non-upgradeable proxy contract that delegates to a hard-coded proxy containing upgrade logic which, in turn, delegates to the nominated RocketMinipoolDelegateimplementation. This saves on deployment costs, with a trade-off of increased gas costs for transactionsinvolving those minipools.
• Removal of total effective RPL stake tracking — The on-chain effective RPL stake is no longer requiredand this has subsequently been removed from all smart contracts.

Page | 3

Rocket Pool Protocol Security Assessment Summary

Security Assessment Summary

This upgrade section of this review was conducted on the files hosted on the rocket-pool/rocketpool contractrepository and were assessed at commit f95d430.
The review focused on changes introduced as part of the Atlas update. In particular, the changes introduced inbranch v1.2 when compared with the master branch (at commit 93f794b)
Subsequent retesting activities targeted commit bea151d, and focused solely on verifying the stated remedia-tions.
Note: the OpenZeppelin libraries and dependencies were excluded from the scope of this assessment.

The manual code review section of the report is focused on identifying any and all issues/vulnerabilities associ-ated with the business logic implementation of the contracts. This includes their internal interactions, intendedfunctionality and correct implementation with respect to the underlying functionality of the Ethereum VirtualMachine (for example, verifying correct storage/memory layout). Additionally, the manual review process fo-cused on all known Solidity anti-patterns and attack vectors. These include, but are not limited to, the followingvectors: re-entrancy, front-running, integer overflow/underflow and correct visibility specifiers. For a more thor-ough, but non-exhaustive list of examined vectors, see [1, 2].
To support this review, the testing team used the following automated testing tools:

• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither
• Surya: https://github.com/ConsenSys/surya

Output for these automated tools is available upon request.

Findings Summary

The testing team identified a total of 10 issues during this assessment. Categorised by their severity:
• High: 2 issues.
• Medium: 2 issues.
• Low: 3 issues.
• Informational: 3 issues.

Page | 4

https://github.com/rocket-pool/rocketpool/
https://github.com/rocket-pool/rocketpool/commit/f95d430821ddb75f5ad26f6f54bf7348eec08f5b
https://github.com/rocket-pool/rocketpool/compare/93f794b8d4aabe4c3e3c64170c475d337bdb9d28...f95d430821ddb75f5ad26f6f54bf7348eec08f5b
https://github.com/rocket-pool/rocketpool/commit/93f794b8d4aabe4c3e3c64170c475d337bdb9d28
https://github.com/rocket-pool/rocketpool/commit/bea151d813d8deee9d8342bc7d763028ddb449e3
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya

Rocket Pool Protocol Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Rocket Pool smart con-tracts. Each vulnerability has a severity classification which is determined from the likelihood and impact of eachissue by the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 5

Summary of Findings

ID Description Severity Status

RPA-01 LightweightMinipool Initialisation Allows Theft ofOperator Refund andState Corruption High Resolved

RPA-02 Node Operators Can Claim RPL Stake Without Running A Node High Closed

RPA-03 Malicious Actors Can Prevent Non-Owner Distributions Medium Resolved

RPA-04 Node Operators ETH Can Be Mistakenly Sent To The Deposit Pool Medium Resolved

RPA-05 Distinction Of Partial/Full Withdrawals Is Not Guaranteed Low Closed

RPA-06 Missing Guards Preventing Direct Initialisation of Minipool Base Con-tract Low Resolved

RPA-07 Minipool preDeposit Submits Entire Contract Balance Low Resolved

RPA-08 Non-Owners May Continually Distribute Balances Informational Closed

RPA-09 The RocketMinipoolProxy Could Be Made Lighter Informational Closed

RPA-10 Miscellaneous General Comments Informational Resolved

6

Rocket Pool Protocol Detailed Findings

RPA-01 Lightweight Minipool Initialisation Allows Theft of Operator Refund and State Corruption
Asset contracts/contract/minipool/RocketMinipoolBase.sol

Status Resolved: The recommended check has been introduced in commit bea151d.
Rating Severity: High Impact: Medium Likelihood: High

Description

There are insufficient checks in the RocketMinipoolBase.initialise() function, allowing it to be executed successfullyby anyone on an already–initialised minipool contract. An unprivileged attacker can exploit this in any lightweightminipool contract to drain pending nodeRefundBalance ETH and corrupt the contract state, blocking further operation.If exploited by a malicious oDAO majority, this could be used to force a minipool contract upgrade that drains alllightweight minipools of all funds.
The testing team notes that widespread theft of funds is unlikely for attackers who do not control an oDAO majority,and state corruption is the likely chief impact on the wider protocol. In normal operation, nodeRefundBalance of anaverage minipool would be low or zero. If node operators are executing the functions to distribute withdrawals andpartial withdrawals, their refund is immediately processed within the same transaction; it is only when network usersexecute these (e.g. due to an unresponsive node operator) that the nodeRefundBalance is credited. It is increasinglyunlikely that a large number of minipools hold a significant nodeRefundBalance value at the same time.

Recommendations

Prevent RocketMinipoolBase.initialise() from executing successfully on contracts that are already initialised.
A check of the following form would be sufficient:
require(storageState == StorageState.Undefined, "Storage state not undefined");

Page | 7

https://github.com/rocket-pool/rocketpool/commit/bea151d813d8deee9d8342bc7d763028ddb449e3

Rocket Pool Protocol Detailed Findings

RPA-02 Node Operators Can Claim RPL Stake Without Running A Node
Asset contracts/contract/minipool/RocketMinipoolDelegate.sol

Status Closed: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

A Node Operator can submit a full withdrawal of their node, receive the ETH from their withdrawal and continue toreceive RPL from their staked RPL.
To achieve this state, a Node Operator submits a full withdrawal. They initiate the counter for a user to distribute thefunds via, beginUserDistribute() . They then distribute funds via another user after the user distribute timeout has
elapsed. Finally, they claim the withdrawn ETH via refund() without calling finalise() .
In this series of events the Node Operators has managed to obtain their owed ETH without running the _finalise()function.
The NodeOperator’s RPL stake remains in the system and they continue to receive RPL staking rewards. If the minipoolhas a large nodeFee that skews the average, they receive a larger share of the tip fee portion distributed them.
The actual reward calculation occurs off-chain so the actual staking rewards are not verified in this review, however itappears that staking rewards are included for non-finalised minipools.

Recommendations

There are a number of ways that this issue might be handled. The resolution should account for this scenario whencalculating RPL staking rewards and smoothing pool rewards for Node Operators which refuse to finalise.
Some examples of possible mitigations are:

• Include decrementNodeStakingMinipoolCount() as part of a final distribution to allow network users to modifythis counter if the operator refuses to.
• Require a Node Operator to mark the minipool as finalised after refunding over a specific amount of ETH.
• Moving the ethMatched modification to within decrementNodeStakingMinipoolCount()

• Non-finalised minipools could be handled in the off-chain calculations of staking rewards.

Resolution

The authors have acknowledged this issue. The rewards generation process is planned to be upgraded before thelaunch of the contract upgrade. The upgraded process will exclude validators that have exited the beacon chain.
A governance thread has been started to discuss the rewards generation process.

Page | 8

https://dao.rocketpool.net/t/odao-proposal-for-rewards-tree-spec-v3/1300/1

Rocket Pool Protocol Detailed Findings

RPA-03 Malicious Actors Can Prevent Non-Owner Distributions
Asset contracts/contract/minipool/RocketMinipoolDelegate.sol

Status Resolved: The recommendation has been introduced in commit bea151d.
Rating Severity: Medium Impact: High Likelihood: Low

Description

The mechanism that allows any user to distribute capital for a minipool can be subverted by a malicious actor.
The distributeBalance() function is able to be called by users who have previously called beginUserDistribute() .This starts a timer after which a period of time specified by the
rocketDAOProtocolSettingsMinipool.isWithinUserDistributeWindow() function, a user can distribute the funds.
This time frame is by default set such that if the function was called between 14 and 16 days ago, a user can distributethe balance.
As beginUserDistribute() is an external function with no modifiers anyone is able to call the function. The functionalso resets the timer. This means a malicious user can continually reset the timer, or front-run transactions to distributethe funds such that it is never possible for a user to distribute the funds.
The likelihood of this issue is low as funds can still always be distributed by the owner, its only the feature that non-owners are able to distribute funds that can be prevented.

Recommendations

The function beginUserDistribute() should be prevented from resetting the userDistributeTime if the elapsed time
is below the upper bound of the rocketDAOProtocolSettingsMinipool.isWithinUserDistributeWindow() function.

Page | 9

https://github.com/rocket-pool/rocketpool/commit/bea151d813d8deee9d8342bc7d763028ddb449e3

Rocket Pool Protocol Detailed Findings

RPA-04 Node Operators ETH Can Be Mistakenly Sent To The Deposit Pool
Asset contracts/contract/node/RocketNodeDeposit.sol

Status Resolved: The recommended check has been introduced in commit bea151d.
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

Node operators that have a sufficient deposit credit and additionally send ETH when depositing, lose their additionalETH.
On line [72], the conditional case that an operator has sufficient credit to create a minipool does not check msg.valueto see if the node also is sending additional ETH.
It can be the case that a Node Operator forgets, or inadvertently sends a deposit value when it has sufficient credit fora deposit bond. The function accepts the ETH without returning the excess to the node operator.

Recommendations

Either return the excess ETH to the node operator or revert the transaction if msg.value != 0 to prevent excess ETHbeing lost to the network.

Page | 10

https://github.com/rocket-pool/rocketpool/commit/bea151d813d8deee9d8342bc7d763028ddb449e3

Rocket Pool Protocol Detailed Findings

RPA-05 Distinction Of Partial/Full Withdrawals Is Not Guaranteed
Asset contracts/contract/minipool/RocketMinipoolDelegate.sol

Status Closed: See the Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The Rocketpool contracts distinguish between a partial and full withdrawal by the amount of ETH sent to the contract.This design has caveats which should be highlighted. There are two extreme cases that are possible which can causeunexpected behaviour in the rocketpool contracts and should be considered.

Poorly Performing Validators

A validator that gets heavily penalized such that its balance becomes ≤ 8 ETH, could withdraw some of the remainingbalance rather than returning it all to the rETH holders, as the Rocketpool contracts would consider this a partialwithdrawal.
In long periods of non-finality validators are more heavily penalised. A validator that has been penalised for inactivitythen slashed (or simply severely slashed) in rare cases can obtain a balance of less than 8 ETH. When withdrawn, thisbalance will appear to the rocket pool contracts as a partial withdrawal and the slashed validator could withdraw someof the remaining balance.
This can be done by calling distributeBalance() on the RocketMinipoolDelegate contract.
An example of this would be a node operator that supplied an original bond of 8 ETH and now has a total balance of 6ETH. The operator would receive:

6 ETH × 0.25 + 6 ETH × 0.75 × 15%(current node fee) = 2.175 ETH
The first term being its share of the rewards and the second term being the fee of the rETH holders rewards.
In this example the node operator has lost 5.825 ETH (72%) and the network has lost 20.175 ETH (84%).
This is illustrated as it should be accounted for in the economic modelling when deciding the risk associated withallowing node operators to supply 25% of the stake. In an adversarial scenario when an operator wants to attack thenetwork, it should be known they can do this in a way that does not consume their entire 8 ETH stake.

Highly Performing Validators or Long Delay Between Partial Withdrawals

Validators could earn more than 8 ETH between partial withdrawal periods making them appear like full withdrawals.
Validators can make more ETH than the usual rewards by submitting valid slashings (a rough estimate is around 130slashings to make 8 ETH). In addition to this, partial withdrawals are planned to be based on a queuing system whichiterates sequentially over the entire validator set. There currently is no technical bounds on the validator set (besidesthe ETH in existence to be used for staking) and the period between partial withdrawals is proportional to the size

Page | 11

Rocket Pool Protocol Detailed Findings

of the active validator set. The longer the period, the greater the average partial validator income will be. Also, anyexternal user could send ETH to a minipool to make a distribution look like a full withdrawal.
Therefore in extreme consensus layer events, such as a single rocket pool validator slashing many other validators itcould be the case that a partial withdrawal exceeds the 8 ETH bound. In this case, the owner may accidentally finalisethe minipool state, despite it still participating in staking.

Recommendations

As the execution layer does not have good visibility over the consensus layer validator states this issue is difficult toresolve without adding additional minipool states or further information from the consensus layer.
As the likelihood of this attack is low, it is left to the authors to decide if it warrants further engineering to correct.
In the poorly performing case, its important to acknowledge the potential additional risk that it raises should an adver-sary attempt to attack the network at scale.

Resolution

This has been acknowledged. The Rocketpool team intend to build further monitoring tools in order to keep track andrespond to extreme events such as those raised in this issue.

Page | 12

Rocket Pool Protocol Detailed Findings

RPA-06 Missing Guards Preventing Direct Initialisation of Minipool Base Contract
Asset contracts/contract/minipool/RocketMinipoolBase.sol

Status Resolved: The recommended check has been introduced in commit bea151d.
Rating Severity: Low Impact: Low Likelihood: Low

Description

The RocketMinipoolBase.initialise() function does not include important checks to protect it from being executed
directly in the context of the RocketMinipoolBase implementation contract. Fortunately, the current initialise()
code implicitly requires that the rocketStorage state variable be already set, as a precondition. As such, this issue isnot exploitable in the current codebase.
The residual risk identified with this issue is associated with how easily it may become exploitable through small codechanges that could be reasonably introduced by the maintainers.

Recommendations

Prevent initialise() from being executed directly in the context of the RocketMinipoolBase contract, without set-
ting the storageState to StorageState.Uninitialised or StorageState.Initialised (which may enable other vul-
nerabilities). This could involve setting storageState to an invalid value in a constructor (provided the recommendation
for RPA-01 is actioned to require a storageState of Undefined), or storing the address of the RocketMinipoolBase in
code and prohibiting execution of initialise() when in the context of that address (i.e. that it can only be executed
via a delegatecall).
The latter could look like:
contract RocketMinipoolBase {

address immutable thisRocketMinipoolBase;
constructor() {

thisRocketMinipoolBase = address(this);
}
function initialise(address _nodeAddress) external {

require(address(this) != thisRocketMinipoolBase);
// ...

}
}

Page | 13

https://github.com/rocket-pool/rocketpool/commit/bea151d813d8deee9d8342bc7d763028ddb449e3

Rocket Pool Protocol Detailed Findings

RPA-07 Minipool preDeposit Submits Entire Contract Balance
Asset contracts/contract/minipool/RocketMinipoolDelegate.sol

Status Resolved: The recommended check has been introduced in commit bea151d.
Rating Severity: Low Impact: Low Likelihood: Low

Description

When submitting an initial deposit to the beacon chain, the entirety of the Minipool contract’s balance is sent. In somecircumstances, this may not equal the preLaunchValue passed to preDeposit() .
In order to verify that the node operator has provided valid validator and withdrawal credentials, the Rocket Poolrequires operators to submit a small preDeposit to the beacon chain deposit contract. Only when the oDAO has hadsufficient time to verify the preDeposit does it become possible to pass network users’ funds to the beacon chain.
At line [326] (shownbelow) the current entirety of theminipool balance is sent, instead of msg.value or preLaunchValue .
function preStake(bytes calldata _validatorPubkey, bytes calldata _validatorSignature, bytes32 _depositDataRoot) internal {

// ...
// Send staking deposit to casper
casperDeposit.deposit{value : address(this).balance}(_validatorPubkey, withdrawalCredentials, _validatorSignature,

_depositDataRoot);↪→
// ...

}

It may be currently possible for address(this).balance to differ from prelaunchValue in the following scenarios:
• When someone has directly transferred ETH to the minipool.
• If there are somehow older minipools (with a direct operator deposit) not yet in the queue. This should not occur.

Recommendations

Confirm whether this behaviour is intentional and consider documenting.
If not intentional, instead send a value of prelaunchValue at line [326].
Consider also that this may be an easily missed bug in the future, if it becomes possible to have a non-zero refundamount or other balance in the minipool at the time of preDeposit() .

Page | 14

https://github.com/rocket-pool/rocketpool/commit/bea151d813d8deee9d8342bc7d763028ddb449e3

Rocket Pool Protocol Recommendations

RPA-08 Non-Owners May Continually Distribute Balances
Asset contracts/contract/minipool/RocketMinipoolDelegate.sol

Status Closed: See Resolution
Rating Informational

Description

A timing mechanism is implemented that requires non-owners to wait a period of time before distributing balances onminipools that they do not own. In some cases, this time restriction is nullified.
The userDistributeTime variable that is used to indicate when a user has indicated that they intend to distribute abalance, is only ever reset on line [367], in the conditional case of a partial withdrawal.
The comments on the userDistributeTime function are:
/// If balance is greater or equal to 8 ETH, users who have called `beginUserDistribute` and waiting the required
/// amount of time can call to distribute capital.

This is not strictly true. As the counter gets reset every partial withdrawal, a non-ownermust call beginUserDistributeagain every time a partial withdrawal is executed. Also, there is no resetting of the counter on full withdrawals. There-fore non-owners are not restricted by this functionality to distribute multiple full withdrawals.

Recommendations

This may be the intended logic of the mechanism. It is raised only to ensure this behaviour is as intended.

Resolution

The logic is intended by the authors.
The waiting period is only there to prevent an arbitrageur from distributing user capital back to the deposit pool beforethe NO has a chance. Allowing the NO to arbitrage provides an incentive for NOs to exit minipools and should helpwith the rETH/ETH peg.
Resetting userDistributeTime() on skim is just a way to prevent bots from calling beginUserDistribute() some timelong in advance of the full withdrawal.

Page | 15

Rocket Pool Protocol Recommendations

RPA-09 The RocketMinipoolProxy Could Be Made Lighter
Asset contracts/contract/minipool/RocketMinipoolProxy.sol

Status Closed: The authors are aware.
Rating Informational

Description

It is possible to minimise the proxy contract to minimise gas costs.
There is known minimal proxy implementations which are documented in [3] and [4] and may help in reducing the gascosts of the RocketMinipoolProxy contract.
The rocketStorage state variable could be instead assigned via a parameter to the RocketMinipoolBase.initialise()function.

Recommendations

This is raised only to make the authors aware that such implementations exist and could be used to minimise gas costsfor proxy deployments.

Page | 16

Rocket Pool Protocol Recommendations

RPA-10 Miscellaneous General Comments
Asset contracts/*

Status Resolved: Authors have acknowledged all issues and provided corrections
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. The RocketMinipoolDelegate.beginUserDistribute() function is missing the onlyInitialised modifier:
Themodifier prevents state changes in the deployed implementation contract and should be added as a preferredpractice.
✓ Resolved in commit [bea151d].

2. Identified Typographical Errors:
• At test/_helpers/minipool.js:185 , createVancantMinipool() should be createVacantMinipool() .
• At test/minipool/scenario-refund.js:44 , assertBN.eq() should be assertBN.equal()

✓ Resolved in commit [bea151d].
3. Identified Optimisations:

(a) At contracts/contract/node/RocketNodeDeposit.sol:110 , getPreLaunchValue() contains an unnecessary
duplicate external call of getContractAddress("rocketDAOProtocolSettingsMinipool") . This was alreadyretrieved at line [104] and, since the private function is not used elsewhere, its contents can instead beinlined below line [105].

✓ Resolved in commit [bea151d].
4. Inconsistent capitalisation convention for ETH:

This abbreviation is inconsistently capitalised as ETH and Eth throughout the codebase. For ex-ample, RocketNodeDeposit contains functions _increaseEthMatched() and increaseEthMatched() , but
RocketNodeStaking contains functions like getNodeETHMatched() , getNodeETHProvided() . Consider standar-dising in updated contracts, to mitigate the friction of typographical errors and third-party integrations.
These can be reviewed via the following CLI commands: rg --glob '*.sol' ETH and rg --glob '*.sol' Eth .

5. Unused variables:
• At contracts/contract/minipool/RocketMinipoolDelegate.sol:276 , launchAmount is unused (shown be-low). This is unlikely to pose a problem but should replace the literal value.

uint256 launchAmount = rocketDAOProtocolSettingsMinipool.getLaunchBalance();
userDepositBalance = uint256(32 ether).sub(nodeDepositBalance);

• At contracts/contract/minipool/RocketMinipoolBondReducer.sol lines [43,52], the minipool local vari-able is unused and can be removed.
RocketMinipoolDelegate minipool = RocketMinipoolDelegate(_minipoolAddress);

✓ Resolved in commit [bea151d].

Page | 17

https://github.com/rocket-pool/rocketpool/commit/bea151d813d8deee9d8342bc7d763028ddb449e3
https://github.com/rocket-pool/rocketpool/commit/bea151d813d8deee9d8342bc7d763028ddb449e3
https://github.com/rocket-pool/rocketpool/commit/bea151d813d8deee9d8342bc7d763028ddb449e3
https://github.com/rocket-pool/rocketpool/commit/bea151d813d8deee9d8342bc7d763028ddb449e3

Rocket Pool Protocol Recommendations

6. Identified comment inaccuracies:

• TheNatSpec comment for dissolve() at contracts/contract/minipool/RocketMinipoolDelegate.sol:523states
/// Only accepts calls from the minipool owner (node), or from any address if timed out
function dissolve() override external onlyInitialised {

However, this is no longer accurate; all accounts must now wait for the timeout.
✓ Resolved in commit [bea151d].

7. Miscellaneous recommendations and bugs:

(a) At contracts/contract/minipool/RocketMinipoolDelegate.sol:5 , the MerkleProof.sol import is unused.
✓ Resolved in commit [bea151d].

(b) At contracts/contract/minipool/RocketMinipoolBondReducer.sol:8 , it is preferable to instead import the
interface contracts/interface/minipool/RocketMinipoolInterface.sol , though compilation may optimiseto the same result. A corresponding change should be made where the import is used at line [89].
✓ Resolved in commit [bea151d].

(c) At contracts/contract/upgrade/RocketUpgradeOneDotTwo.sol:202 , prefer moving the statement
executed = true; up to line [147] to abide by the checks–effects–interactions best practice thatprotects against re-entrancy vulnerabilities.

✓ Resolved in commit [bea151d].
(d) Consider introducing into RocketMinipoolFactory an explicit “sanity check” that the RocketMinipoolBase

contract is registered before irrevocably “burning” it into the RocketMinipoolProxy instance.
That is, check that the following require statement holds:
address rocketMinipoolBase = rocketStorage.getAddress(keccak256(abi.encodePacked("contract.address",

"rocketMinipoolBase")));↪→
require(rocketMinipoolBase != address(0));

This is not associatedwith a vulnerability identified in the current code, as the deployment transactionwouldrevert in a subsequent call to initialise() at RocketMinipoolFactory.sol:63 .
The testing team recommends including this in the RocketMinipoolFactory instead of the proxy constructorin order to reduce the size of the contract creation bytecode.
✓ Resolved in commit [bea151d].

(e) Consider deregistering or removing RocketMinipoolStatus as a network contract, now that it serves no
purpose. This helps minimise the number of contracts with access to RocketStorage , and thus its attacksurface.

(f) The logic in contracts/contract/minipool/RocketMinipoolDelegate.sol implementing a distributioncooldown (shown below), appears unnecessary and no longer serves a useful purpose.
This, and maintenance of the withdrawalBlock state variable, appears safe to remove.

443 // Rate limit this method to prevent front running
require(block.number > withdrawalBlock + distributionCooldown, "Distribution of this minipool's balance is on

cooldown");↪→

✓ Resolved in commit [bea151d].

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Page | 18

https://github.com/rocket-pool/rocketpool/commit/bea151d813d8deee9d8342bc7d763028ddb449e3
https://github.com/rocket-pool/rocketpool/commit/bea151d813d8deee9d8342bc7d763028ddb449e3
https://github.com/rocket-pool/rocketpool/commit/bea151d813d8deee9d8342bc7d763028ddb449e3
https://github.com/rocket-pool/rocketpool/commit/bea151d813d8deee9d8342bc7d763028ddb449e3
https://github.com/rocket-pool/rocketpool/commit/bea151d813d8deee9d8342bc7d763028ddb449e3
https://github.com/rocket-pool/rocketpool/commit/bea151d813d8deee9d8342bc7d763028ddb449e3

Rocket Pool Protocol Vulnerability Severity Classification

Appendix A Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.html. [Ac-cessed 2018].
[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].
[3] Pete Murray, Nate Welch, Joe Messerman. EIP-1167: Minimal Proxy Contract, Available: https://eips.ethereum.

org/EIPS/eip-1167.
[4] OpenZeppelin. Deep Dive Into The Minimal Proxy Contract, Available: https://blog.openzeppelin.com/

deep-dive-into-the-minimal-proxy-contract/.

Page | 19

https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/
https://eips.ethereum.org/EIPS/eip-1167
https://eips.ethereum.org/EIPS/eip-1167
https://blog.openzeppelin.com/deep-dive-into-the-minimal-proxy-contract/
https://blog.openzeppelin.com/deep-dive-into-the-minimal-proxy-contract/

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Lightweight Minipool Initialisation Allows Theft of Operator Refund and State Corruption
	Node Operators Can Claim RPL Stake Without Running A Node
	Malicious Actors Can Prevent Non-Owner Distributions
	Node Operators ETH Can Be Mistakenly Sent To The Deposit Pool
	Distinction Of Partial/Full Withdrawals Is Not Guaranteed
	Poorly Performing Validators
	Highly Performing Validators or Long Delay Between Partial Withdrawals
	Missing Guards Preventing Direct Initialisation of Minipool Base Contract
	Minipool preDeposit Submits Entire Contract Balance
	Non-Owners May Continually Distribute Balances
	Recommendations
	The RocketMinipoolProxy Could Be Made Lighter
	Miscellaneous General Comments

	Vulnerability Severity Classification

