@c gence

AUDITS

FUZZING SCRIBBLE ABOUT

Rocketpool v1.1 Features

1 Executive Summary

2 Scope

2.1 Objectives
3 System Overview

4 Findings

4.1 RocketMinipoolDelegate -
Minipool owner’s stake can get
stuck

4.2 RocketStorage -
Concentrated risk by allowing all
registered contracts to change
arbitrary settings

Acknowledged

4.3

RocketMerkleDistributorMainnet -

Lacking input validation in
claimAndStake and _claim
Medium

4.4 RocketRewardsPool -
Incorrect modifier ({13

4.5 Redundantinterface casts

4.6 RocketVault - Confusing
parameter type handling (113

4.7 RocketDepositPool - risk of
gas-based denial of service

(1) Acknowledged

4.8

RocketMerkleDistributorMainnet -

Improve _claim tests
4.9 Gas Optimizations

4.10 RocketMinipoolQueue -
Confusing function naming

411 Potential for collisions when
writing/reading settings

4.12 Consistent documentation
using NatSpec

4.13 RocketTokenRETH - Evasion
of receive eventemission

4.4 Create architecture diagram

Appendix 1 - Disclosure

Date July 2022

Dominik Muhs, Christian
Goll, David Braun, Rai
Yang

Auditors

1 Executive Summary

This report presents the results of our engagement with RocketPool to review their v1.1 changes.

The review was conducted over two weeks, from July 4 to July 15 by Dominik Muhs, Christian Goll, David Braun and Rai Yang. A
total of six person-weeks were spent.

During the first week, the audit team familiarized itself with all necessary components implementing the new in-scope features.
The group investigated the penalty system, Minipool-related accounting, and the overall staking lifecycle.

In the second week, the auditors focused on exploring the new reward system and validating assumptions around the system’s
token economy. A small amount of time has furthermore been spent validating issues from the previous audit performed in
March 2021. These issues are marked as “Acknowledged” since they were previously reviewed by the development team. These
items have been added for completeness and visibility.

Given the time constraints, it was agreed to conduct this review on a best-effort basis prioritizing the focus areas.

2 Scope

Our review focused on the commit hash f7657e64591507e45116c34245d2e f7eedsbs243 . Furthermore, the following Gist was provided:
https://gist.github.com/kanewallmann/835d1f96c2754220382b85a637dec51e (revision from June 24)

2.10bjectives

Together with the RocketPool team, we identified the following priorities for our review:

-

. The security of the fee distribution and penalty systems and the related oDAO functionalities.

2. The Merkle tree-based reward system and changes leading to its integration, e.g., in the node manager and node staking
contracts.

3. The protocol’s new deposit fee parameter and overall effort to prevent front-running attacks.
4. Ensure that the system is implemented consistently with the intended functionality and without unintended edge cases.

5. Identify known vulnerabilities particular to smart contract systems, as outlined in our Smart Contract Best Practices, and the
Smart Contract Weakness Classification Registry.

3 System Overview

The system components involved in applying and accounting for penalties.

Represents an individual
minipool In the system

4 Findings
Each issue has an assigned severity:

o (I issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

e Medium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

e (B issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

. issues are directly exploitable security vulnerabilities that need to be fixed.

4.1 RocketMinipoolDelegate - Minipool owner's stake can get stuck czm
Description

Once a Minipool is initialized (minipoolstatus.Initialised), the owner can no longer call the dissolve function to close the Minipool
and retrieve their stake until the protocol assigns sufficient user funds. The user funds must be fully allocated, and the Minipool
must proceed to the Minipoolstatus.Prelaunch state to successfully call dissolve . The Minipool owner’s stake will be locked in the
contract until then.

Examples

code/contracts/contract/minipool/RocketMinipoolDelegate.sol:L430-L435
require(
(status == MinipoolStatus.Prelaunch && block.timestamp.sub(statusTime) >= rocketDAOProtocolSettingsMinipool.getLaunchTimeout()),
"The minipool can only be dissolved once it has timed out"
)i
// Perform the dissolution
_dissolve();
Recommendation
Adhere to the business logic outlined in the function’s comment:

Only accepts calls from the minipool owner (node), or from any address if timed out

Consequentially, the function should first check whether the msg.sender is the Minipool owner and, if not, fall back to the timeout
check. The 1nitialised Status must also be considered to allow owners an early exit before user funds have been assigned.

4.2 RocketStorage - Concentrated risk by allowing all registered contracts to change arbitrary
setti NJS (71 Acknowledged

Description

The ACL for changing settings in the centralized Rrocketstorage allows any registered contract (listed under the contract.exists key)
to change settings that belong to other parts of the system.

The concern is that if someone finds a way to add their malicious contract to the registered contact list, they will override any
setting in the system. The storage is authoritative when checking specific ACLs. Setting any value might allow an attacker to
gain control of the complete system. Allowing any contract to overwrite other contracts’ settings dramatically increases the
attack surface.

Minipool is self-destructed when closed, but it can be recreated by the Minipool owner referencing a malicious minipool
delegate contract updated by a corrupted DAO vote. The Minipool owner can steal funds staked by the users.

Examples

code/contracts/contract/RocketStorage.sol:L41-L53
modifier onlylLatestRocketNetworkContract() {

if (storageInit == true) {
// Make sure the access is permitted to only contracts in our Dapp
require(booleanStorage[keccak256 (abi.encodePacked(“contract.exists”, msg.sender))], "Invalid or outdated network contract");

} else {
// Only Dapp and the guardian account are allowed access during initialisation.
// tx.origin is only safe to use in this case for deployment since no external contracts are interacted with
require((

booleanStorage[keccak256 (abi.encodePacked("contract.exists”, msg.sender))] || tx.origin == guardian
), "Invalid or outdated network contract attempting access during deployment");

code/contracts/contract/minipool/RocketMinipoolDelegate.sol:L466
selfdestruct(payable(rocketTokenRETH)) ;
code/contracts/contract/minipool/RocketMinipool.sol:L37

address delegateAddress = getContractAddress("rocketMinipoolDelegate");

Recommendation

Allow contracts to only change settings related to their namespace.

4.3 RocketMerkleDistributorMainnet - Lacking input validation in claimAndStake and _claim
Medium

Description

In the RocketMerklebistributorMainnet CONtract, the claimandstake function allows node operators to claim rewards for one or more
reward intervals, and stake a set amount of RPL at the same time.

The internal _c1aim function does not check whether the length of its input arrays (_rewardIndex , _amountRPL , _amountETH , _merkleProof
) are all equal. Instead, it loops over the _rewardindex array right away, using the current index to access other parameters’
entries. If any array other than _rewardindex contains more fields, they will not be considered. If the _rewardindex array is too short,
the transaction will revert due to an out-of-bounds error.

Examples
code/contracts/contract/rewards/RocketMerkleDistributorMainnet.sol:L84-L87
for (uint256 i = @; i < _rewardIndex.length; i++)

totalAmountRPL = totalAmountRPL.add(_amountRPL
totalAmountETH = totalAmountETH.add(_amountETH

)
)

i]
i]

code/contracts/contract/rewards/RocketMerkleDistributorMainnet.sol:L122-L143

for (uint256 i = @; i < _rewardIndex.length; i++) {
// Prevent accidental claim of @

require(_amountRPL[i] > @ || _amountETH[i] > @, "Invalid amount");
// Check if this entry has a different word index than the previous
if (indexWordIndex !'= _rewardIndex[i] / 256) {

// Store the previous word
setUint(claimedWordKey, claimedWord);
// Load the word for this entry
indexWordIndex = _rewardIndex[i] / 256;
claimedWordKey = keccak256 (abi.encodePacked('rewards.interval.claimed', _nodeAddress, indexWordIndex));
claimedWord = getUint(claimedWordKey);
¥
// Calculate the bit index for this entry
uint256 indexBitIndex = _rewardIndex[i] % 256;
// Ensure the bit is not yet set on this word
uint256 mask = (1 << indexBitIndex);
require(claimedWord & mask != mask, "Already claimed");
// Verify the merkle proof
require(_verifyProof(_rewardIndex[i], _nodeAddress, _amountRPL[i], _amountETH[i], _merkleProof[i]), "Invalid proof");
// Set the bit for the current reward index
claimedWord = claimedWord | (1 << indexBitIndex);

Recommendation

Check the length of input arrays (_rewardindex , _amountRPL , _amountETH , _merkleProof) t0 be of equal length and revert with a
meaningful error message informing the executing party that the submitted parameters are malformed.

4.4 RocketRewardsPool - Incorrect modifier cmm
Description
The RocketRewardsPool.executeRewardSnapshot function has the following onlylLatestContract modifier:

code/contracts/contract/rewards/RocketRewardsPool.sol:L185-L186

// Executes reward snapshot if consensus threshold is reached
function executeRewardSnapshot(RewardSubmission calldata _submission) override external onlylLatestContract("rocketNetworkBalances", ad

It was probably copied and pasted by mistake from a method of the rocketNetworkBalances contract. As written, it will prevent
executeRewardsnapshot from executing because it is checking for the wrong contract (rocketNetworkBalances).

Recommendation

Rewrite the modifier to check for rocketrewardsPool :
onlylatestContract (" rocketRewardsPool”, address(this))

A failed unit test could have caught this bug. We recommend adopting Test-Driven Development to increase test coverage.

4.5 Redundant interface casts ozm
Description

Throughout the code, various redundant and duplicate interface casts exist. Furthermore, these occurrences often violate the
project’s naming conventions, where contract instances have variable names ending with contract and address types carrying
the Address suffix.

Examples

code/contracts/contract/dao/node/RocketDAONodeTrustedActions.sol:L105-L106

// Let vault know it can move these tokens to itself now and credit the balance to this contract
rocketVault.depositToken(getContractName(address(this)), IERC20(rocketTokenRPLAddress), rplBondAmount);

code/contracts/contract/minipool/RocketMinipoolManager.sol:L205-L207

function getMinipoolWithdrawalCredentials(address _minipoolAddress) override public pure returns (bytes memory) {
return abi.encodePacked(byte(6x81), bytes11(0x0), address(_minipoolAddress));

code/contracts/contract/rewards/RocketMerkleDistributorMainnet.sol:L92-L94

if (remaining > @) {
rocketVault.withdrawToken(withdrawalAddress, IERC20(rocketTokenRPLAddress), remaining);

code/contracts/contract/rewards/RocketMerkleDistributorMainnet.sol:L105-L107

RocketNodeStakingInterface rocketNodeStaking = RocketNodeStakingInterface(getContractAddress("rocketNodeStaking"));
rocketVault.withdrawToken(address(this), IERC20(rocketTokenRPLAddress), _stakeAmount);
rocketTokenRPL .approve (address(rocketNodeStaking), _stakeAmount);

code/contracts/contract/token/RocketTokenRPL.sol:L47-L51

constructor(RocketStorageInterface _rocketStorageAddress, IERC28 _rocketTokenRPLFixedSupplyAddress) RocketBase(_rocketStorageAddress)
// Version
version = 1;
// Set the mainnet RPL fixed supply token address
rplFixedSupplyContract = IERC20(_rocketTokenRPLFixedSupplyAddress) ;

code/contracts/contract/token/RocketTokenRPL.sol:L183-L189

IERC20 rplInflationContract = IERC20(address(this));

// Get the current allowance for Rocket Vault

uint256 vaultAllowance = rplFixedSupplyContract.allowance(rocketVaultAddress, address(this));

// Now allow Rocket Vault to move those tokens, we also need to account of any other allowances for this token from other contracts in
require(rplInflationContract.approve(rocketVaultAddress, vaultAllowance.add(newTokens)), “"Allowance for Rocket Vault could not be appr
// Let vault know it can move these tokens to itself now and credit the balance to the RPL rewards pool contract
rocketVaultContract.depositToken("rocketRewardsPool", IERC20(address(this)), newTokens);

In the above, furthermore, rpiinflationcontract can be removed and the call to rpiInflationcontract.approve refactored to approve since
the main contract inherits from Eerc2esurnable .

Recommendation

Remove redundant casts, work with the most specific types where possible, and remove any state variables that become unused
in the process.

4.6 RocketVault - Confusing parameter type handling gz

Description

In the Rocketvault.withdrawToken function, an 1erc2e parameter _tokenaddress is passed. The ERC20 interface type is then used to
determine contractkey , an internal key for ERC20 token balance tracking.

Right after, the interface instance is explicitly cast into the same type again. This cast indicates a potential error made during a
previous refactoring. Either the cast is redundant since the contractkey Works with the interface instance, or _tokenaddress is
supposed to be an address type.

Examples

code/contracts/contract/RocketVault.sol:L98-L111

function withdrawToken(address _withdrawalAddress, IERC20 _tokenAddress, uint256 _amount) override external onlylLatestNetworkContract
// Valid amount?
require(_amount > @, "No valid amount of tokens given to withdraw");
// Get contract key
bytes32 contractKey = keccak256(abi.encodePacked(getContractName(msg.sender), _tokenAddress));
// Update balances
tokenBalances[contractKey] = tokenBalances[contractKey].sub(_amount);
// Get the token ERC26 instance
IERC20 tokenContract = IERC20(_tokenAddress);
// Withdraw to the desired address
require(tokenContract.transfer(_withdrawalAddress, _amount), "Rocket Vault token withdrawal unsuccessful");
// Emit token withdrawn event
emit TokenWithdrawn(contractKey, address(_tokenAddress), _amount, block.timestamp) ;

Recommendation

Change the _tokenaddress parameter to _tokencontract and consistently work with the specific ERC20 interface. When an address
type is needed, the explicit address(_tokencontract) cast can be used.

4.7 RocketDepositPool - risk of gas-based denial of service e acknowtedged

Description

RocketDepositPool._assignDeposits S€eMS to be a gas-heavy function, with many external calls, many of which are inside the main for-
loop. By default, _rocketbAoProtocolSettingsbeposit.getMaximumDepositAssignments(); returns 2 , which is not a security concern. Through a
DAO vote, however, the deposit.assign.maximum Settings key can be set to a value that exhausts the block gas limit and effectively
deactivates the deposit assignment process.

Examples

code/contracts/contract/deposit/RocketDepositPool.sol:L155-L160

uint256 maxAssignments = _rocketDAOProtocolSettingsDeposit.getMaximumDepositAssignments();
MinipoolAssignment[] memory assignments = new MinipoolAssignment[](maxAssignments);
MinipoolDeposit depositType = MinipoolDeposit.None;

uint256 count = 0;

uint256 minipoolCapacity = 0;

for (uint256 i = @; i < maxAssignments; ++i) {

Recommendation

A check that prevents a DAO vote from setting unreasonably high deposit.assign.maximm values should be added.

4.8 RocketMerkleDistributorMainnet - Improve _claim tests

Description

The _ciaim function does some fairly complex gas-optimization bitmapping to record which rewards have been claimed, but the
test coverage of this code is thin and doesn't, e.g., test any of the three require cases.

Examples

code/contracts/contract/rewards/RocketMerkleDistributorMainnet.sol:L123-L124

// Prevent accidental claim of @
require(_amountRPL[i] > @ || _amountETH[i] > @, "Invalid amount");

code/contracts/contract/rewards/RocketMerkleDistributorMainnet.sol:L136-L138

// Ensure the bit is not yet set on this word
uint256 mask = (1 << indexBitIndex);
require(claimedWord & mask != mask, "Already claimed");

code/contracts/contract/rewards/RocketMerkleDistributorMainnet.sol:L139-L140

// Verify the merkle proof

require(_verifyProof(_rewardIndex[i], _nodeAddress, _amountRPL[i] amountETH[i], _merkleProof[i]), "Invalid proof");

Recommendation

Improve the test coverage of the complex _claim function in test/rewards/rewards-test.js to ensure the bitmap math is correct and
that the require cases fail when appropriate.

4.9 Gas Optimizations
Description

The RocketPool developers expressed the need for gas-efficient code in their lite specification of the contract’s changes here;
thus, we recommend the following gas optimizations for the for loops used throughout the codebase, particularly in

RocketRewardsPool .

Examples

code/contracts/contract/rewards/RocketRewardsPool.sol:L110-L119

function getClaimingContractsPerc(string[] memory _claimingContracts) override external view returns (uint256[] memory) {
// Load contract
RocketDAOProtocolSettingsRewardsInterface daoSettingsRewards = RocketDAOProtocolSettingsRewardsInterface(getContractAddress("rocke
// Get the % amount allocated to this claim contract
uint256[] memory percentages = new uint256[](_claimingContracts.length);
for (uint256 i = @; i < _claimingContracts.length; i++){
percentages[i] = daoSettingsRewards.getRewardsClaimerPerc(_claimingContracts[i]);

}
return percentages;
}
Recommendation

In the above example, it is far more efficient to cache the array length accessed and use a pre-increment over a post-increment.
The resulting modified code will look like the one below. Comments have been attached indicating the modifications.

function getClaimingContractsPerc(string[] memory _claimingContracts) override external view returns (uint256[] memory) {
// Load contract
RocketDAOProtocolSettingsRewardsInterface daoSettingsRewards = RocketDAOProtocolSettingsRewardsInterface(getContractAddress("rock
// Get the % amount allocated to this claim contract
uint256[] memory percentages = new uint256[](_claimingContracts.length);
// Cache the array length
uint256 arraylength = _claimingContracts.length;
// Utilise post increment
for (uint256 i = @; i < _claimingContracts.length; ++i){
percentages[i] = daoSettingsRewards.getRewardsClaimerPerc(_claimingContracts[i]);
¥

return percentages;

This recommendation is based on Harikrishnan Mulackal’s gas optimization write-up. Please refer to his document for further
details.

4.10 RocketMinipoolQueue - Confusing function naming
Description

In the RocketMinipoolqueue COde, the getlength function has been overloaded to use a minipoolbeposit parameter on the one hand and
a bytess2 parameter on the other hand. The function names should be explicitly distinguished to increase maintainability and
readability.

Examples

code/contracts/contract/minipool/RocketMinipoolQueue.sol:L49

function getlLength(MinipoolDeposit _depositType) override external view returns (uint256) {
code/contracts/contract/minipool/RocketMinipoolQueue.sol:L55

function getlLength(bytes32 _key) private view returns (uint256) {

Recommendation

We recommend making the function names more expressive to help readers distinguish between the respective business logic.
Line 49 could be getLengthForbepositType , and line 55 could be getLengthrorkey oF, following the code base’s existing pattern, adding
an underscore to underline the function’s visibility: _getLength .

411 Potential for collisions when writing/reading settings
Description

The system heavily relies on a centralized hash indexed storage. The storage keys are formed with distinct namespace prefixes
potentially concatenated with user-tainted input. Here’s one example of this:

code/contracts/contract/dao/RocketDAOProposal.sol:L173-L186

setAddress (keccak256 (abi.encodePacked(daoProposalNameSpace, “proposer”, proposalID)), _member); // Which member is
setString(keccak256(abi.encodePacked(daoProposalNameSpace, "dao", proposallD)), _dao); // The DAO the pro
setString(keccak256(abi.encodePacked(daoProposalNameSpace, "message"”, proposallD)), _message); // A general messa
setUint(keccak256(abi.encodePacked(daoProposalNameSpace, "start", proposallD)), _startTime); // The time the pr

setUint(keccak256(abi.encodePacked(daoProposalNameSpace, "end", proposalID)), endTime); // The time the pr
setUint(keccak256(abi.encodePacked(daoProposalNameSpace, “expires"”, proposalID)), expires); // The time when t
setUint(keccak256(abi.encodePacked(daoProposalNameSpace, “created”, proposalID)), block.timestamp); // The time the pr
setUint(keccak256(abi.encodePacked(daoProposalNameSpace, “votes.for", proposallD)), 0); // Votes for this
setUint(keccak256(abi.encodePacked(daoProposalNameSpace, "“votes.against", proposallD)), 8); // Votes against t
setUint(keccak256(abi.encodePacked(daoProposalNameSpace, "“votes.required", proposallD)), _votesRequired); // How many votes
setBool(keccak256(abi.encodePacked(daoProposalNameSpace, “cancelled”, proposallD)), false); // The proposer ca
setBool(keccak256(abi.encodePacked(daoProposalNameSpace, "executed”, proposalID)), false); // Has this propos
setBytes(keccak256 (abi.encodePacked(daoProposalNameSpace, "payload”, proposallD)), _payload); // A calldata payl

// Update the total proposals

abi.encodePacked €ncodes dynamic types in-place without a length prefix, and static types will not be padded if they are shorter
than 32 bytes. If namespace prefixes are not chosen carefully, a user might provide a value that overlaps into another settings
namespace (after the prefix). Special care should be taken if dynamic or short types are used with encodePacked as this might
make it easier to force such situations.

Throughout the review, the assessment team has not found any signs of this issue. However, it should be noted that developers
must be made aware of this potential problem. It is highly recommended to support the secure development process by tooling
that checks for possible overlaps in the Cl pipeline.

412 Consistent documentation using NatSpec
Description

For consistency and user- and machine-readability, we recommend using the NatSpec format:
https://docs.soliditylang.org/en/v0.7.6/natspec-format.html.

413 RocketTokenRETH - Evasion of receive event emission

Description

When the rETH token contract receives ETH funds, it is expected to emit an Etherbeposited event. The same event is raised in the
depositexcess function. The event might be consumed by off-chain infrastructure for accounting purposes. To disrupt that
process, a malicious party can force-feed Ether into the rETH token contract through a large variety of means, increasing its ETH
balance but not triggering an event.

Examples

code/contracts/contract/token/RocketTokenRETH.sol:L33-L36

receive() external payable {
// Emit ether deposited event
emit EtherDeposited(msg.sender, msg.value, block.timestamp);

Recommendation

We recommend double-checking off-chain infrastructure consuming the Etherbeposited event for potential force-feeding issues
and taking the address balance into account instead of solely relying on the emitted event.

414 Create architecture diagram
Description

The Rocket Pool is composed of 40 smart contracts that collectively comprise over 5,000 lines of code. A clear understanding
of the large code base is vital to discern any existing vulnerabilities and avoid introducing new ones.

Recommendation

Create an architecture diagram of the code to show the high-level structure and relationships between major components. This
map will aid developers, especially ones unfamiliar with the code (such as external auditors), to come up to speed more quickly
in understanding the code and serve as a collaboration tool for communication with other developers.

Appendix 1 - Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via ConsenSys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the
Reports in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their
consent. The scope of our review is limited to a review of code and only the code we note as being within the scope of our
review within this report. Any Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains
under development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other
areas beyond specified code that could present security risks. Cryptographic tokens are emergent technologies and carry with
them high levels of technical risk and uncertainty. In some instances, we may perform penetration testing or infrastructure
assessments depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) - on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites
operated by persons other than ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and
are the exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are not responsible for the content
or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other person or entity for the
use of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or
mean that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely
responsible for determining the extent to which you may use any content at any other web sites to which you link from the
Reports. ConsenSys and CD assumes no responsibility for the use of third party software on the Web Site and shall have no
liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject
to change without notice. Unless indicated otherwise, by ConsenSys and CD.

Request a Security Review Today

Get in touch with our team to request a quote for a smart contract audit.

CONTACT US

AUDITS Subscribe to Our Newsletter

FUZZING)
Stay up-to-date on our latest offerings, tools,

SCRIBBLE and the world of blockchain security.

BLOG
Email

. _
RESEARCH
ABOUT

CONTACT

CAREERS

PRIVACY POLICY

poweren By Y CONSENSYS

