
Rocket Pool DAO Smart Contracts Update
Review | April 2024

by ChainSafe Systems | April 2024

Table of contents
1. Introduction

Defining Severity
Referencing updated code

Disclaimer

2. Executive Summary

3. Critical Bugs and Vulnerabilities

4. Line-by-line review
contracts/contract/RocketBase.sol

contracts/contract/dao/protocol/RocketDAOProtocol.sol

contracts/contract/dao/protocol/RocketDAOProtocolProposal.sol

contracts/contract/dao/protocol/RocketDAOProtocolProposals.sol

contracts/contract/dao/protocol/RocketDAOProtocolVerifier.sol

contracts/contract/dao/protocol/settings/RocketDAOProtocolSettingsNode.sol

contracts/contract/dao/protocol/settings/RocketDAOProtocolSettingsSecurity.sol

contracts/contract/dao/security/RocketDAOSecurityProposals.sol

contracts/contract/network/RocketNetworkPrices.sol

contracts/contract/network/RocketNetworkSnapshots.sol

contracts/contract/network/RocketNetworkVoting.sol

contracts/contract/node/RocketNodeStaking.sol

contracts/contract/upgrade/RocketUpgradeOneDotThree.sol

contracts/contract/rewards/RocketClaimDAO.sol

1. Introduction

Date Auditor(s)

April 2024 Oleksii Matiiasevych, Anderson Lee

Rocket Pool Pty Ltd requested ChainSafe Systems to perform a review of the Rocket Pool
DAO smart contracts update. The contracts can be identified by the following git diff:

6a9dbfd85772900bb192aabeb0c9b8d9f6e019d1 original

60684a7f0366a4233164a4d264b70991cc3cd86f update

There are 72 contracts, interfaces and libraries in scope.

After the initial review, Rocket Pool team applied a number of updates which can be identified by
the following git commit hash:

84ac19872dda7ca9c39c4f7349159d0e984130b9

Additional verification was performed after that.

Defining Severity

Each finding is assigned a severity level.

Note

Notes are informational in nature. They are typically suggestions around
best practices or readability. Code maintainers should use their own
judgment as to whether to address such issues.

Optimization
Optimizations are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

Minor
Minor issues are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

Major

Major issues are security vulnerabilities that may not be directly
exploitable or may require certain conditions in order to be exploited. All
major issues should be addressed.

Critical
Critical issues are directly exploitable security vulnerabilities that need to
be fixed.

Referencing updated code

Resolved
The finding has been acknowledged and the team has since updated the
code.

Rejected The team dismissed this finding and no changes will be made.

Disclaimer

The review makes no statements or warranties about the utility of the code, safety of the code,
suitability of the business model, regulatory regime for the business model, or any other
statements about the fitness of the contracts for any specific purpose, or their bug free status.

2. Executive Summary
All the initially identified minor and above severity issues were fixed and are not present in the
final version of the contracts.

There are no known compiler bugs for the specified compiler version (0.8.18), that might affect
the contracts’ logic.

There were 1 critical, 2 major, 1 minor, 32 informational/optimization issues identified in the
initial version of the contracts. The Rocket Pool team provided a comprehensive documentation
complemented with illustrations on how the voting protocol is supposed to work, which allowed us
to fully comprehend and validate the logic behind it.

We are looking forward to future engagements with the Rocket Pool.

3. Critical Bugs and Vulnerabilities
Single critical issue RocketDAOProtocolVerifier.getPollardRootIndex() was identified in the
contracts which could allow a malicious actor to create invalid yet unchallengeable proposals
technically taking control of the DAO.

4. Line-by-line review

contracts/contract/RocketBase.sol

L16 Optimization Rejected

uint8 public version;

The version state variable could be made immutable.

L19 Optimization Rejected

RocketStorageInterface rocketStorage =
RocketStorageInterface(address(0));

The rocketStorage state variable could be made immutable.

contracts/contract/dao/protocol/RocketDAOProtocol.sol

L55 Optimization Rejected

function bootstrapSettingMulti(...) ...
onlyLatestContract("rocketDAOProtocol", address(this)) {

The bootstrapSettingMulti() function has an onlyLatestContract modifier that checks itself,
which is excessive assuming that the inside call to proposalSettingMulti() has the same
modifier applied. Same applies to other infrastructure functions in the repository.

contracts/contract/dao/protocol/RocketDAOProtocolProposal.sol

L5 Note Resolved

The RocketDAOProtocolInterface import could be removed.

L6 Note Resolved

The RocketDAOProtocolProposalsInterface import could be removed.

L7 Note Resolved

The RocketDAOProtocolSettingsInterface import could be removed.

L8 Note Resolved

The RocketDAOProtocolSettingsRewardsInterface import could be removed.

L9 Note Resolved

The RocketClaimDAOInterface import could be removed.

L10 Note Resolved

The RocketDAOProposalInterface import could be removed.

L11 Note Resolved

The RocketNodeManagerInterface import could be removed.

L12 Note Resolved

The SettingType import could be removed.

L50-52 Optimization Resolved

for (uint256 i = 0; i < _treeNodes.length; i++) {
 totalVotingPower += _treeNodes[i].sum;
}

The _treeNodes.length could be cached with a local variable.

L354 Note Resolved

require(_blockNumber <= block.number, "Block must be in the past");

The _propose() function allows creation of proposals at the current block which is prone to be
frontrun invalidating the voting power Merkle tree. For instance a malicious actor could change
their voting power.

contracts/contract/dao/protocol/RocketDAOProtocolProposals.sol

L50 Note Resolved

function proposalSettingMulti(...) ... onlyExecutingContracts() {

The onlyExecutingContracts modifier has parentheses at the end even though other modifiers
don’t.

contracts/contract/dao/protocol/RocketDAOProtocolVerifier.sol

L186 Note Rejected

require(depth < maxDepth * 2, "Invalid index depth");

The createChallenge() function validates the index depth < maxDepth * 2 twice. First in the
beginning of the function and second in the getPollardRootIndex() function.

L289 Note Resolved

The claimBondChallenger() function should not expect a situation where some challenges are
still unresponded, and the proposal is not defeated at the same time.

L393-396 Major Resolved

uint256 state = getUint(challengeKey);

// Make sure this index was actually challenged
require(state != 0, "Challenge does not exist");

The submitRoot() function allows a proposer to resubmit root multiple times, resetting the
challenge state from Paid to Responded , then unlocking their stake multiple times.

L466 Optimization Rejected

uint256 delegateIndex = (_offset + i) / nodeCount;

The verifyLeaves() function excessively calculates delegateIndex for every leaf, while the
resulting index is the same for all of them.

L474 Optimization Rejected

if (actualDelegate == rocketNodeManager.getNodeAt(delegateIndex)) {

The verifyLeaves() function excessively calls
rocketNodeManager.getNodeAt(delegateIndex) for every leaf, while the resulting address is the

same for all of them.

L475 Major Resolved

actual = rocketNetworkVoting.getVotingPower(nodeAddress, blockNumber32);

The verifyLeaves() function could produce different results during proposal lifetime based on
the node.per.minipool.stake.maximum setting value. This would invalidate any pending
proposal.

L633-649 Critical Resolved

if (indexDepth < maxDepth) {
 // Index is leaf of phase 1 tree
 uint256 remainder = indexDepth % depthPerRound;
 require(remainder == 0, "Invalid index");
 return _index / (2 ** depthPerRound);
} else if (indexDepth == maxDepth) {
 // Index is a network tree leaf
 uint256 remainder = indexDepth % depthPerRound;
 return _index / (2 ** remainder); // <- Critical Issue
} else if (indexDepth < maxDepth * 2) {
 // Index is phase 2 pollard
 uint256 subIndexDepth = indexDepth - maxDepth;
 uint256 remainder = subIndexDepth % depthPerRound;
 require(remainder == 0, "Invalid index");
 return _index / (2 ** depthPerRound);
}
revert("Invalid index");

The getPollardRootIndex() produces invalid results at the bottom of the network tree when
maxDepth % depthPerRound == 0 . This would result in a proposal being unchallengeable. The

following formula is incorrect _index / (2 ** remainder) and should be changed to something
like _index / (2 ** (remainder == 0 ? depthPerRound : remainder)) .

contracts/contract/dao/protocol/settings/RocketDAOProtocolSettingsNo
de.sol

L10 Note Resolved

The RocketDAOProtocolSettingsNode contract doesn't have set settings validation conditions.

contracts/contract/dao/protocol/settings/RocketDAOProtocolSettingsSe
curity.sol

L16-35 Note Resolved

setSettingUint("members.leave.time", 4 weeks);
...
} else if(settingKey ==
keccak256(abi.encodePacked("members.leave.time"))) {
 // < 14 days (RPIP-33)
 require(_value < 14 days, "Value must be < 14 days");

The constructor() sets the members.leave.time at 4 weeks, while the setSettingUint()
function has a less than 2 weeks condition.

contracts/contract/dao/security/RocketDAOSecurityProposals.sol

L174 Optimization Rejected

setBool(keccak256(abi.encodePacked(daoNameSpace, "member",
_memberAddress)), false);

The _memberInit() function excessively sets member to false , while it should already be
false .

L177 Optimization Rejected

setUint(keccak256(abi.encodePacked(daoNameSpace, "member.joined.time",
_memberAddress)), 0);

The _memberInit() function excessively sets member.joined.time to 0 , while it should
already be 0 .

contracts/contract/network/RocketNetworkPrices.sol

L14 Optimization Resolved

bytes32 priceKey;

The priceKey state variable could be made immutable.

L15 Optimization Resolved

bytes32 blockKey;

The blockKey state variable could be made immutable.

contracts/contract/network/RocketNetworkSnapshots.sol

L115 Optimization Resolved

result._value = uint224(uint256(raw) & (2 ** 224 - 1));

The _load() function applies a 224 bit mask to the raw value, then casting it into a uint224 .
Masking is excessive, just casting is enough as the compiler performs masking by itself.

L128 Optimization Resolved

return uint224(uint256(raw) & (2 ** 224 - 1));

The _valueAt() function applies a 224 bit mask to the raw value, then casting it into a uint224 .
Masking is excessive, just casting is enough.

contracts/contract/network/RocketNetworkVoting.sol

L109 Note Resolved

uint256 rplStake = uint256(rocketNetworkSnapshots.lookupRecent(key,
uint32(_block), 5));

The getVotingPower() function excessively casts _block to uint32 .

contracts/contract/node/RocketNodeStaking.sol

L88-91 Optimization Resolved

uint256 value = getUint(key);
setUint(key, value + _amount); // Optimization Issue
RocketNetworkSnapshotsInterface rocketNetworkSnapshots =
RocketNetworkSnapshotsInterface(getContractAddress("rocketNetworkSnapshot
s"));
rocketNetworkSnapshots.push(key, uint32(block.number), uint224(value +
_amount));

The increaseNodeRPLStake() function keeps updating the deprecated storage slot along with a
snapshot even if the node stake value already migrated to snapshots.

L98-101 Optimization Resolved

uint256 value = getUint(key);
setUint(key, value - _amount); // Optimization Issue
RocketNetworkSnapshotsInterface rocketNetworkSnapshots =
RocketNetworkSnapshotsInterface(getContractAddress("rocketNetworkSnapshot
s"));
rocketNetworkSnapshots.push(key, uint32(block.number), uint224(value -
_amount));

The decreaseNodeRPLStake() function keeps updating the deprecated storage slot along with a
snapshot even if the node stake value already migrated to snapshots.

L413-417 Minor Resolved

uint256 rplStake = getNodeRPLStake(_nodeAddress);
uint256 lockedStake = getNodeRPLLocked(_nodeAddress);
require(rplStake >= _amount, "..."); // Minor Issue
// Check withdrawal would not under collateralise node
require(rplStake - _amount - lockedStake >=
getNodeMaximumRPLStake(_nodeAddress), "...");

The withdrawRPL() function does not account for lockedStake when validating the amount.
The requirement should be: rplStake >= _amount + lockedStake .

contracts/contract/upgrade/RocketUpgradeOneDotThree.sol

L279 Note Resolved

The _deleteContract() function is not used.

L288 Note Resolved

The _upgradeABI() function is not used.

contracts/contract/rewards/RocketClaimDAO.sol

L151-153 Optimization Resolved

setSettingUint("members.leave.time", 4 weeks);
...
for (uint256 i = 0; i < _contractNames.length; i++) {
 payOutContract(_contractNames[i]);
}

The _contractNames.length could be cached with a local variable.

